
Verifying a Distributed Database Lookup

Manager Written in Erlang

Thomas Arts1 and Mads Dam2

1 Computer Science Laboratory, Ericsson Utvecklings AB, 126 25 Stockholm,
Sweden, +46 8 7199514, thomas@cslab.ericsson.se,

http://www.ericsson.se/cslab/~thomas/
2 Swedish Institute of Computer Science, Box 1263, S-164 28 Kista, Sweden,

mfd@sics.se, http://www.sics.se/~mfd/home.html

Industrial Applications, experience report

Keywords: Telecommunication; Proof Checker; Distributed Algorithms; Dis-
tributed Databases; Formal Veri�cation

Abstract. We describe a case-study in which formal methods were used
to verify an important responsiveness property of a distributed database
system which is used heavily at Ericsson in a number of recent products.
One of the aims of the project was to verify the actual running code which
is written in the distributed functional language Erlang. In a joint project
between SICS and Ericsson we have over the past few years been devel-
oping a tableau-based veri�cation tool for Erlang of considerable scope.
In particular, we are capable of addressing | on the level of running
program code | systems with unbounded behaviour along the many di-
mensions in which this happens in \real" programs, involving datatypes,
recursive control structures, error handling and recovery, initialisation,
and dynamic process creation. The database lookup manager consid-
ered here contains most of these features, giving rise to in�nite state
behaviour which is not very adequately handled using model checking or
other approaches based purely on state space traversal. In the paper we
introduce the case study, our approach to formalisation and veri�cation,
and discuss our experiences using the Erlang veri�cation tool.

1 Introduction

Erlang is a functional programming language developed by Ericsson [AVWW96],
which is used extensively for writing robust distributed telecommunication appli-
cations. Central in many of these applications is a distributed database, Mnesia
[Mnesia], also written in Erlang. The Mnesia system is crucial to the robustness
of almost all Erlang based product developed at Ericsson. It is, for instance,
responsible for error recovery, the prompt and safe handling of which is essential
in telecommunication applications. These features make the Mnesia system a
rewarding object of study when trying out new veri�cation techniques.

The case study at hand concerns only a small part of the Mnesia system,
a protocol for the evaluation of a query which is distributed over several com-
puters in a network. The starting point for this case study was the Erlang code

implementing the distributed database. The author of this code knew that the
query lookup protocol was implemented in a tricky way and got interested in
supporting his implementation with a clear and veri�ed description.

We extracted, from the real implementation, the code for the distributed
query evaluation protocol and added some code to provide a very simple sim-
ulated interface to parts of the system that were irrelevant for the problem at
hand. The result was an Erlang program that could be seen as a very precise,
and in some sense formal, description of the underlying algorithm. Isolation of
the code responsible for the lookup mechanism and analysing the intended be-
haviour of the code resulted, as a side e�ect, in a clear and patentable picture
of the underlying protocol [Nil99].

In Sect. 2 we present the distributed query evaluation in more detail. As
input the protocol receives a database query divided into subqueries. These
subqueries are distributed over the network in the form of processes on those
computers where the speci�c data for a subquery is stored. By sending messages
to the subquery processes, data is extracted from the database tables and sent
along the network. One process is responsible for initialising the lookup process
ring, and for collecting the resulting data. To avoid excessive delays and storage
consumption, query answers are collected in segments, managed by the lookup
manager. The task we set ourselves was to prove that the implementation pro-
vided a responsiveness property: that input queries are eventually being replied
to.

The query lookup manager implements initialisation and query lookup phases
in manners which are tightly interwoven. Both these phases are important for
correct behaviour. Moreover, the code is evidently designed to cater for tables
of arbitrary numbers and sizes, and for queries of arbitrary natures. Reecting
this, our aim was to prove correctness uniformly in these parameters, i.e. without
�xing numbers and sizes of tables and queries in advance. This sort of problem is
outside the scope of model checkers, symbolic or otherwise, or other techniques
based purely on global state space traversal.

There are several reasons why we �nd this sort of veri�cation exercise useful
and interesting.

{ First of all it is clearly relevant to verify the actual code rather than some
abstraction of it, as this gives us more accurate and reliable information
about the way the system is going to behave when it is eventually executed1.

{ Secondly, by analysing the code, and in particular, by analysing it in a com-
positional manner, as we do, we produce verication information which is
reusable as the system grows. By contrast, most approximate analyses, such
as ones based on abstract interpretation (c.f. [Cri95]), tend to be global ones,
not readily reusable.

{ Thirdly, and most signi�cantly, the Erlang code itself is in fact already quite
abstract, in the sense of providing designers and implementors with a concise
set of primitives and language constructs which are eÆciently implementable
yet not at all far from a process calculus-like level of abstraction.

1 Absolute accuracy, of course, is unattainable

2

{ Fourthly we have the potential to maintain strong links between running and
veri�ed code. For instance, it will very often be possible to update proofs in a
fully automatic way after minor code revisions, by reapplying proof tactics.

{ As a longer term perspective, we are interested in developing object and
component encapsulation techniques for which a code veri�cation capability
is essential.

To realize the veri�cation we used a tool [ADFG98] which we are in the
process of building, based on an approach to compositional veri�cation which
we have developed in some recent papers (c.f. [DFG98]). The approach uses a
tightly integrated mix of state-space exploration and proof-editing techniques.
System properties and speci�cations are given in a �rst-order temporal logic, a
variant of Park's �-calculus [Par76] tailored, in this case, speci�cally to Erlang.
Proof goals are stated as general Gentzen-type sequents, proved in a goal-driven
fashion by re�nement and loop detection. The result is a very powerful proof
system which supports model checking, compositional reasoning, and general
coinductive or inductive reasoning, for instance about datatypes, in a uniform
framework.

In Sect. 3 we briey describe our approach to speci�cation. In Sect. 4 the
actual veri�cation is described and an outline of the informal proof is presented.
Then in Sect. 5 we describe in more detail our approach to formalisation of
the proof, and its realisation in the veri�cation tool. Large parts of the proof are
easily automatable by tactics that perform model-checking like state exploration,
or prove type adherence or termination of sequential functions. Since these tactics
are often used within interactively developed proofs, our veri�cation approach
gives rise to proofs that easily become large enough (several thousand nodes) for
tool support to be essential. We conclude, in Sect. 6, with some �nal remarks,
reecting on the approach followed and lessons learned from performing this case
study.

2 A Process Veri�cation Problem

In this section we explain the mechanism for query lookup and the property we
have proved.

Whenever a query is formulated for the distributed database the query is
analysed and divided into subqueries each addressing only one table, since the
tables in which the requested information is stored are distributed over several
computers. The subqueries are distributed over a network as processes located
at the computer where the information is available. A request is sent to the �rst
of the spawned processes, which reads data from a table. This results in several
partially instantiated queries, which are sent to the next process. For every
such partly instantiated query, the next process reads additional data from a
table, resulting in further instantiations. The last process gathers all data and
sends it to the requesting process. To avoid unnecessary delays in transmission,
processing, and database lookup, and to avoid excessive storage consumption,
query processing is split into segments.

3

6
?

Æ
��
P1

�
��=

Æ
��
P2

Z
ZZ}

Æ
��
Pn

Æ
��
Pn-1

B
B
BBN

�
��

-

�� ��
� �
� �� ��� ��

� �
� �� �

�� ��
� �
� �� �

Fig. 1. Ring of processes attached to tables, with P1 the initial process

We identify an initial process taking care of a query by partioning it into
subqueries, represented by Erlang functions, whereafter for every such subquery
a process is created on a computer where the subquery can �nd its informa-
tion. All spawned processes execute the same function, which have one of the
Erlang functions that represents the subquery as an argument. The processes
are spawned in a ring con�guration and the initial process may be seen as a
distinguished member of this ring.

query setup(Query,DBStructure) ->

SubQueries = split handle(Query,DBStructure),

mk ring(self(),SubQueries).

mk ring(NextPid,SubQueries) ->

case SubQueries of

[]->

wait for request(NextPid);

[Q|Qs] ->

mk ring(spawn(process in ring,[NextPid,Q,[]]),Qs)

end.

In our approach we abstract from the actual computation of the subqueries
and assume that this computation results in a list of functions with at least one
element. For every such function a process is created on the appropriate machine,
where the name of the machine is computed together with the subquery itself.
For readability, we have chosen not to present the machine name and perform the
spawning on only one machine. Spawning on several machines is done similarly,
where the Erlang spawn primitive needs the machine name as an additional
argument.

The function process in ring is spawned with three arguments, the process
identi�er (pid) of the next process in the ring, the function representing the
subquery, and the empty list representing a local store for the process (see below
for more details on this store).

4

After spawning the ring (Fig. 1), the initial process (P1) executes the func-
tion2

wait for request(NextPid) ->

receive

fuser request,UserPid,NrSolutionsg ->

PacketSize = some value smaller(NrSolutions),

NextPid!f[[]],PacketSizeg,
counting(NextPid,UserPid,NrSolutions,[])

end.

with as argument the next process in the ring (Pn). Now P1 is ready to re-
ceive a message of the form fuser request, UserPid, NrSolutionsg where
the triple represents an atom user request to identify the message type, the
pid of the requesting process and the maximum number of solutions that the
latter process wants to receive. Observe that, because of the asynchronous com-
munication discipline of Erlang, a user request may arrive at the mailbox of the
initial process long before it is actually processed.

Whenever this message arrives, a message is sent to the consecutive process in
the ring (Pn), which is the �rst process able to perform a subquery lookup. The
process P1 subsequently calls the function counting, which collects all answers
that the subqueries of the ring produce. The idea is that for all solutions that
a process in the ring receives, it computes all new solutions using its subquery
lookup function. This might result in an increase or decrease of the number of
solutions. These new solutions are passed to the next process and so on, until
P1 receives the answers and can present them to the user.

However, in order not to overload the network, the processes in the ring are
not sending all the answers they �nd, but just a �xed number PacketSize, which
is dynamically determined by P1 (via the function some value smaller where
we abstract from the real computation) and depends on the number of requested
solutions and the network load. Thus, the number PacketSize is sent along in the
message from P1 to the next process Pn in the ring. The latter process computes
all answers it can �nd according to its subquery and sends at most PacketSize
of these answers to the next process, whereas the remaining answers are kept
in the store. All consecutive processes in the ring perform the same actions and
eventually P1 receives at most PacketSize answers. The process P1 may now add
these answers to its store and as long as the store is less than the demanded
number of answers (NrSolutions) a message will be sent to the process Pn

requesting to produce new answers.

counting(NextPid,UserPid,NrSolutions,Store) ->

receive

fSolutions,PacketSizeg ->

NewStore = Solutions ++ Store,

2 In the real code this receive statement is incorporated in the function mk ring, this
has been modi�ed for clarity of presentation.

5

SolutionsToGet = NrSolutions - length(NewStore),

case fSolutions,SolutionsToGet =< 0g of

f ,trueg -> % enough solutions found

UserPid!fuser response,NewStoreg
f[], g -> % no more solutions in DB

UserPid!fuser response,NewStoreg
Otherwise ->

NextPid!f[],PacketSizeg,
counting(NextPid,UserPid,NrSolutions,NewStore)

end

end.

Except for the initial processes, all other processes in the ring, i.e. P2; : : : ; Pn,
are evaluating the function process in ring.

process in ring(NextPid,Filter,Store) ->

receive

fSolutions,PacketSizeg ->

case PacketSize =< length(Store) of

true ->

fToSend,ToStoreg = split(PacketSize,Store),

NextPid!fToSend,PacketSizeg,
NewStore = ToStore ++ flatmap(Filter,Solutions),

process in ring(NextPid,Filter,NewStore);

false ->

NewStore = Store ++ flatmap(Filter,Solutions),

fToSend,ToStoreg = split(PacketSize,NewStore),

NextPid!fToSend,PacketSizeg,
process in ring(NextPid,Filter,ToStore)

end

end.

These processes wait for a message containing at most PacketSize answers
of the previous process and the value PacketSize itself. The number of stored
answers is compared to the number PacketSize of demanded answers and if
enough answers are already in the store, these are sent along to the next process
and new answers are computed. In case not enough answers are stored, �rst all
new answers are computed, whereafter at most PacketSize answers are sent to
the next process and all other answers are stored for the next round. Answers
are computed using the function flatmap which applies the function Filter

to any partially instantiated query in the list Solutions. The function Filter

has been generated from the original query and the database and was given as
an argument of the spawned function. We abstract from this function and only
assume that Filter is a terminating function that results in a (probably empty)
list of arguments. The function flatmap results in the concatenation of all lists
that result from applying Filter to all arguments of Solutions, which might

6

either be a longer or a shorter list than the Solutions itself. In this way, the
store of the process may increase and decrease dynamically.

The function split divides a list in two sublist of which the length of the �rst
list contains the �rst PacketSize elements of the list, provided that PacketSize

is given as an argument to the function. Functions like =< and ++ have their
usual meaning. In the veri�cation process these functions are not considered as
build-in functions, like they are in Erlang, but are speci�ed separately.

The property that we want to verify is informally described as `Is the retrieval
of the information terminating?' In other words, given an arbitrary query and
an arbitrary positive integer, whenever we build a ring corresponding to this
query and send a message of the form fuser request,MyPid,Numberg to the
�rst process in the spawned ring, do we always eventually receive a message
back with at most this Number of solutions in it?

3 The Speci�cation Logic and its Proof System

It is not completely trivial to come up with a correct formal rendition of property
outlined at the end of Sect. 2. A �rst step is to understand correctly the abstract
execution mechanism of Erlang. We gave a core fragment of Erlang, involving,
roughly, the features used in the present example, an SOS-style operational se-
mantics. Among the more tricky features to model adequately is communication.
In Erlang interprocess communication is asynchronous. Each process is equipped
with one mailbox. Sending is non-blocking: The transmitted message is placed
at the end of the mailbox belonging to the receiving process. Messages are sub-
sequently read by retrieving the �rst message in the mailbox matching a given
pattern. Since we need to analyse behaviour both at the level of processes and
process communication and at the level of sequential function elaboration we are
forcing a separation between the time at which a message packet crosses a pro-
cess boundary (or: enters the schedulers domain, i.e. the process mailbox), and
the time at which the packet is read from the mailbox by the receiving process.

A second step is to adequately account for the execution behaviour of pro-
cesses in a formal property speci�cation language. Our work has been based on
a �rst-order �xed point calculus inspired by Park's �-calculus [Par76,Koz83],
extended with Erlang-speci�c features. In summary this logic is based on the
�rst-order language of equality, extended with modalities reecting state tran-
sition capabilities, least and greatest �xed points, along with a few additional
primitives. Using �-calculus correctly is by itself well known to be tricky. On
the other hand we have found the �-calculus recursive style of speci�cation ex-
tremely natural and useful. We have used an equational style of speci�cation,
using the notation

prop(args)) body

for greatest �xed points (the body can be inferred from the head), and

prop(args)(body

7

for least �xed points (the head must be inferred from the body). Whereas this
notation is fraught with danger (how are dependencies resolved?) a clear bene�t
of such a notation is that it encourages a programming language style of spec-
i�cation de�ning \larger", more complicated properties in terms of \smaller"
ones.

The bene�ts of the equational style of speci�cation becomes apparent, in
particular, once properties are decomposed. To do this one typically need to
express state, liveness, or safety properties embedded inside another invariant
which needs to adequately capture all possible ways in which the processes can
interact, and the consequences of these interactions. An example of the shape of
property one obtains is (1) below.

A complication which is more semantical than due to the recursive style of
speci�cation is Erlang's asynchronous communication. Since receivers are pow-
erless to inuence the delivery of packets into receivers mailbox, for the purpose
of packet delivery events, and in the absence of a suitable fairness assumption
(which we have not so far implemented), it is possible for packet delivery to con-
tinuously preempt progress by the local process. In this example we have been
able to bypass this problem, as the ring structure enforces a synchrony property
that ensures to a suÆcient extent that mailboxes do not grow in unbounded
manners.

3.1 The logic

Typical Erlang-related primitives are the term = e to pick up the Erlang ex-
pression associated with the process under evaluation and compare this with the
term e; unevaluated which is true if the Erlang expression under evaluation is
not yet in normal form; and similar primitives for queues and process identi�ers
with are local or foreign to the system under consideration.

The modal operators <�> and [�] (not to be confused with the Erlang list
constructors [] (the nil list) and [hdjtl]) are used to express transition capabilities.
The formula <>� holds if an internal transistion is enabled to a state satisfying
�. Similarly, we have a diamond operator for the non-internal transitions for
sending and receiving, viz. <P !V >� and <P ?V >�. Observe that the receive
modality is \appending to recipients mailbox". The box operator is the dual
of the diamond operator, expressing that a formula should hold in all states
reachable in one transition from the current state.

Using least and greatest �xed point temporal properties likely liveness and
safety can easily be expressed. Furthermore simple data types, like lists and
natural numbers, can be expressed using least �xed points:

list(L)((L = []) _ 9H:9T:(list(T) ^ (L = [H jT]))

Combinations of both greatest and least �xed points are used to express the
complicated eventuality properties we deal with in this case-study. A represen-
tative example of the latter is the formula that expresses that the property
wait for input holds for an arbitrary number of internal computation steps, un-
til a certain shape of message is received and the property continue holds. The

8

properties wait for input and continue will typically be mutually recursive, so
let us assume that wait for input is de�ned in the context of a de�nition

continue) � � � (wait for input) � � � :

Now wait for input is de�ned in the following way:

wait for input(RightForm)) wait for input'(RightForm) (1)

wait for input'(RightForm)([]wait for input'(RightForm) ^

8P:8V:([P !V]false) ^

8P:8V:([P ?V](RightForm(P; V) ^

continue))

The least �xed point ensures that the predicated process does not diverge (i.e.
performs an in�nite sequence of internal computation steps without ever writ-
ing an incoming message to its mailbox. The greatest �xed point on the other
hand permits states satisfying wait for input in�nitely often, as long as they are
in�nitely often separated by continue states.

4 Outline of the Proof

According to the informal property as stated in Sect. 2, we are dealing with two
actions initiating the query lookup: �rst the ring is built and thereafter a request
message is sent to the �rst process in this ring. For veri�cation we are focusing
on the outcome of the valuation of the Erlang expression:

Ring = spawn(query setup,[Query,DBStructure]),

Ring!fuser request,self(),NrSolutionsg,
receive

fuser response,Solutionsg
end.

where we quantify over all possible values of Query,DBStructure, NrSolutions

and Solutions. We abstract from the �rst two variables by assuming the function
split handle to result in a list of functions, where the real interesting issue is
the length of this list, which can be any positive integer determining the number
of processes in the ring. The property we address in this paper is that evaluation
of this Erlang expression is terminating. Similar properties of interest are:

{ The number of received answers is equal to the number of demanded answers
if that many answers exist in the database.

{ The set of obtained answers is independent of the packet size, provided the
latter is a positive number.

Given the experience of, e.g., the wait for input formula (1) formulating the re-
sponsiveness property is not too diÆcult. The speci�cation will have the following

9

shape:

spec) spec'

spec' (2spec' ^ 8P:8V:[P !V]false ^

8P:8V:[P ?V]((P = userpid) ^

9From:9N:(V = fuser request;From; Ng) ^ �)

where � expresses responsiveness in a similar style, that eventually a user re-
sponse is sent to the pid From, before returning to a state satisfying spec. Several
details are omitted in this description: Information about process identi�ers and
the store have to be carried over to the property �, and assumptions concerning
the return address From, and the types of other arguments have to be made.

The basic style of speci�cation is one of distinguishing abstract states in
which (aggregate sets of) processes may �nd themselves. The abstract states
will often correspond to in�nitely many actual states of the process. For every
process we de�ne a few abstract states and formulate which properties should
hold in these states and how one property depends on the other. The processes
we consider are the initial process evaluating the given Erlang expression, a ring
process (which is not the initial one), and, as part of an inductive argument, and
a ring segment which includes the initial process.

4.1 The ring invariant

The basic diÆculties in proving the speci�cation to hold are the unbounded
number of ring processes which can be created, and the unbounded number of
query replies which can be requested. To address these diÆculties we resort to
induction. We identify two invariants:

1. An invariant to hold of each of the ring processes P2; : : : ; Pn (c.f. Fig. 2).

2. A sort of structural and temporal invariant for a ring segment of the shape
P1; Pn; : : : ; Pi.

Æ
��
P1

�
��=

Æ
��
P2

Z
ZZ}

Æ
��
Pn

Æ
��
Pn-1

B
B
BBN

�
��

-

Q
Q
Q
Q
Q

Fig. 2. Induction on number of processes in ring

10

Let us call the �rst invariant proc wait for input and the second invariant for
rootspec. We �rst need to show that rootspec is strong enough to derive the end
speci�cation we wish to establish, i.e. a sequent of the shape

x : rootspec(� � �) ` x : spec(� � �): (2)

The task is thus to prove that rootspec holds of the process initially evaluating
query setup:

some assumptions ` proc(query setup(� � � ; � � �) : rootspec(� � �) (3)

Using straightforward, and fully automatable, state exploration techniques which
we return to in the following section we can reduce (3) �rst to a subgoal of the
shape

some assumptions ` proc(mk ring(� � � ; � � �) : rootspec(� � �) (4)

and then, by continuing state exploration, to a subgoal of the shape

some assumptions ` proc(mk ring(� � � ; � � �) k (5)

proc(process in ring(� � �)) : rootspec(� � �)

The idea is to prove two lemmas, one stating the correctness of process in ring,

some assumptions ` proc(process in ring(� � �)) : proc wait for input(� � �) (6)

and one concerning the composability of rootspec with proc wait for input,

C1 : rootspec(� � �); C2 : proc wait for input(� � �) ` C1 k C2 : rootspec(� � �) (7)

Subgoal (7) states a compositional property of root and ring processes: putting
together a (possibly aggregate) process (P1) acting as a root with a (possibly
aggregate) process acting as a ring element results in an aggregate process which
again acts as a root. Obviously the correctness of this statement is crucially
dependent on input and outputs being properly connected, which are matters
we will not be concerned with here.

By themselves, (6) and (7) are not suÆcient to conclude (5). However, using
(6) and (7) it is possible to reduce to a goal which is actually an instance of the
goal (4), and the remarkable fact is that, in principle, an inductive argument
can be set up such that at this point the proof can be completed (c.f. [DFG98]).
In realizing this proof, however, a number of complications must be attended to
which we return to in Sect. 5.

4.2 Properties of the separate processes

We are thus left with two main subgoals, one of the shape (6), and one of the
shape (7). We do not comment further on (7) other than observe that the ring
process property proc wait for input we are looking for must be strong enough
to permit (7) to be proved. Instead we turn to proc wait for input.

11

We start by observing the role of a special token that is initially sent by the
�rst process (P1) in the ring and implies termination as soon as it is also re-
ceived by this process, i.e. when the token has gone through the entire ring. This
special token (f[],PacketSizeg), which we call the end token for convenience,
is repeatedly send by P1 to Pn after initially sending f[[]],PacketSizeg once.
In case the number of demanded solutions is larger than the number of solutions
present in the database, the process P1 can only respond to the user when this
end token is received from the process P2.

The �rst process in the ring P1 plays a special role and the abstract states
we distinguish for this process are

1. the process is waiting for a user request,
2. a non-end token is sent to the next process (Pn) and the process is waiting

for a message,
3. an end token is sent to the next process and the process is waiting for a

message,
4. a non-end token is received and not enough answers are collected,
5. the end token is received or another token is received and enough answers

are collected.

Our choice to follow the real code and not to abstract from the actual count-
ing of the number of answers, causes the state space of this �rst process in the
ring to be unbounded. For this reason, modelchecking is infeasible for this part
of the proof as well, but with our veri�cation tool such a proof can be handled.

States that we distinguish for the processes in the ring are characterized
by whether or not they receive an end token and whether or not they send an
end token. Crucial is the observation that after receiving an end token once,
only end tokens can be received successively. The latter is a property of the
ring and not of the process itself, but when proved for the ring, we use it in
our formalization to disallow the state transition from receiving an end token to
receiving a non-end token.

For a process in the ring (P2; : : : ; Pn) we de�ne four abstract states, depend-
ing again on the end token:

1. the process awaits the reception of an arbitrary message,
2. the process receives an end-message and sends a message to the next process,
3. the process receives a non-end-message and sends a message to the next

process,
4. the process waits for receiving a successive end-message.

Every state is captured in a property, but also the relation to the other ab-
stract states is reected in this same property using the �xed point operators.
The proof boils down to the observation that if the end token is repeatedly re-
ceived the process is forced to pass on at least one element of its store. Thus
the store becomes smaller and smaller and when empty, the process sends the
end token as well. Note again that a property outside the view of the process
in the ring should ensure that after receiving an end token we cannot receive
a non-end token anymore. This property is hidden in the relation between the
properties of consecutive states, but is proved in the more general setting.

12

5 Proof Search and Automation

The success of our interactive theorem-proving based approach in large-scale
applications is heavily dependent on three factors:

1. Robust tactics that help solve and reduce subproblems of clearly identi�able
natures.

2. Use of such tactics to the maximal extent possible, to eliminate user inter-
vention whenever possible.

3. A user interface that helps users navigate and assist the theorem proving
process in a meaningful way, when such assistance is really required.

To minimize user intervention we adopt as lazy an approach to proof search
as we have found possible, using existential variables to delay commitments
to existential witnesses, proof goals stated as general Gentzen-type sequents to
delay commitments to disjunctive choices, and a lazy approach to induction using
loop detection which we have introduced in some recent papers (c.f. [DFG98]).

5.1 Induction and Discharge

As we outlined in the previous section we use a very tightly integrated mix of
state-space exploration and proof-editing techniques. As in most proof editors
the proof construction process is a goal-driven one: Proof goals in the form of
Gentzen-type sequents are re�ned in steps by the application of one of a number
of primitive proof rules.

Most proof goals call for induction (or coinduction) for their proofs. Many
types of induction are involved in an example such as the one we consider here:

{ Induction on number of evaluation steps.
{ Induction on size of data values, such as numbers or lengths of lists.
{ Induction on the structure of function expressions.

Induction on the number of execution steps from some initial con�guration is
typically used if we prove that computing the length of a list results in a natural
number, or that comparing two numbers results in a boolean. Coinduction is
used, typically, for invariants, by showing that the invariant remains unbroken
after any number of computation steps. General programs involve data type oper-
ations, communication, and, maybe, dynamic creation of new processes, in man-
ners which are interwoven to considerable extents, as happens in our database
lookup manager. To handle these complications, most parts of the proof will
involve induction and coinduction at many levels simultaneously, in manners
which, when properly formalized, may be exceedingly complicated. Our proof
theoretic approach, using loop detection, or discharge, allows very substantial
parts of this formalisation to be almost completely hidden from the user. The
discharge mechanism implemented in the tool follows the principles laid out in
[DFG98]. In e�ect the discharge mechanism attempts to cast the proof as so far
constructed as a proof by simultaneous induction, by seeking an ordering that

13

makes the dependency relation between induction and coinduction variables a
well-founded one. Maintaining the constraints on this dependency ordering is
done by the proof editor. Thus there is no need for users to specify the sequence,
nesting, or mutual dependencies of simultaneous inductive arguments, or even to
state that induction is being used. All this is managed by the tool. However, the
user will need to have a basic understanding of the general principles of simul-
taneous induction for the operation of the discharge rule to be understandable.
And, most importantly, the tool has no built-in support for �nding inductive
assertions. Such support can be programmed (as tactics), or must alternatively
| as in our case | be provided explicitly.

5.2 Proof Construction

Our proof approach, and the size of problems which we address, gives rise to
complications concerning proof sharing and proof construction which we have
had to address.

A naive implementation of a proof editor for Erlang quickly runs out of
space, because of the large number of independent transitions. Observe that
independence is a feature not only in-between processes, but also within a sin-
gle process independent choices can be viewed as arising between writing an
incoming message to the local mailbox, or letting local computation progress.
As a consequence, state spaces for even small, single processes grow very sig-
ni�cantly. To handle this we implemented an inference rule, copy discharge for
subproof sharing to close proof branches in case they are seen to have already
been dealt with elsewhere.

Example 1. The Erlang semantics is such that one can always receive a mes-
sage in the mailbox. Thus, in many properties we state that either an internal
action is possible, or the process may receive something in the mailbox. Here
the proofnode has two branches, performing the action or receiving the message.
After performing the action, one normally should be able to receive the message
anyway and after receiving the message, one can still perform the action. Instead
of searching for, and constructing, the proof twice, we use copy discharge to join
the nodes. Since this is done recursively, one easily sees that the prooftree would
grow exponentialy when we lack this copy discharge.

Observe that a correct implementation of the copy discharge feature is compu-
tationally quite expensive: to check for circularity, to support \undo", and to
interact correctly with existential variables.

To support discharge and, in particular, subproof sharing it seems essential to
maintain a \current" proof tree, and have rules of proof elaborate this proof tree
through side e�ects. Observe that this makes the proof construction process very
di�erent from that of other proof editing tools (such as PVS [ROS92,Sha96], Coq
[DFH+], Lego [Lego], Isabelle [Pau94],...) which maintain only the leaves, but not
the internal structure of proof trees. Thus, in these tools one shares subproofs
by having the user formulate lemma's which are used for several leaves. We

14

overcome this user intervention and in case a subproof need not be performed,
this is detected automatically.

5.3 Tactics

The construction of proof trees by side e�ects has drastic impact on the pro-
gramming of tactics, for instance. The bene�t, besides the support of discharge
and (in particular) copy-discharge, is that the entire proof tree becomes available
for inspection and navigation. In fact, to help keep the information manageable
we implemented a facility for suppressing the creation on new nodes. The cost
of maintaining the complete proof tree, on the other hand, is that tactics pro-
gramming becomes much more diÆcult, and that the attractive, and very tight,
connections between term and proof structure evident from e.g. type theory, get
lost. So far we have implemented a rather \dirty" solution, giving users access to
the basic proof rules themselves, to a set of basic rules for accessing and travers-
ing proof trees, to a small set of tactic constructors, like sequential composition,
conditional, etc, and to a higher-order tactic de�nition facility.

/* resolvable: Proof branch can be closed */

rule resolvable =

eq r() /* Node is provable equality */

orelse id() /* Node is instance of id rule */

orelse ...

orelse copy discharge() ;

/* rightexpandable: Goal can be reduced but not closed */

rule rightexpandable =

or r() orelse and r() orelse ... orelse all r

orelse box sem() ; /* Chase transition */

rule rightreduce =

block

if isleaf() /* Node is not yet reduced */

then if resolvable ()

then skip

else if rightexpandable()

then block next above() ; rightreduce end

else fail("rightreduce")

else fail("rightreduce")

end ;

Fig. 3. Tactic for simple \model checking"

Another example is outlined on Fig. 3 which is shown less for its details than
to give a general impression of the shape of tactics we used for the example. In
our case study tactics were indispensable. They permitted us ot produce very

15

large parts of the proofs entirely automatically. We implemented tactics for a
wide range of purposes, and of very di�erent generality. For instance it is quite
easy to implement simple proof strategies for boolean formulas as tactics.

Example 2. A coarse approximation of the Erlang function process in ring as
presented in Sect. 2, just receiving an integer, incrementing it by one and passing
it on:

fun process in ring =

fNextProcessg ->

receive fNg ->

begin NextProcess!(N+1), process in ringNextProcess end

end

end

The following \wait for input" property expresses the behaviour of such ring
processes in state transition terms:

wait for input(pid1; pid2)) wait for input0(pid1; pid2)

wait for input'(pid1; pid2)([]wait for input'(pid1; pid2)

^ 8P:8V:[P !V]false

^ 8P:8N:[P ?N]((P = pid1) ^

nat(N)! respond(pid1; pid2))

respond(pid1; pid2)) respond'(pid1; pid2)

respond'(pid1; pid2)([]respond'(pid1; pid2)

^ 8P:8V:[P !V]((P = pid2) ^

nat(V) ^ wait for input(pid1; pid2))

Using a tactic based on right reduce above the proof goal (6) was proved
automatically, with subproof sharing, using 212 nodes, 1 application of discharge,
and 7 applications of copy-discharge. Turning subproof sharing o� the same
tactic required 530 nodes and 12 applications of discharge. The size increase is
due to one subproof being duplicated thrice.

For larger sequential functions than the one considered in Ex. 2 the issue
of subproof sharing becomes very urgent, and it is not hard to realize that an
exponential growth in proof size will be the rule rather than the exception.

Also for sequential function evaluation we found tactics very helpful. The
counting function, for instance, appeals to a number of small auxillary func-
tions like length, split, flatmap, or comparison operators like � which are
implemented as functions as well. Frequently small lemmas are needed to show
termination, or to show type preservation properties which are not guaranteed
in general, as Erlang is an untyped language.

Tactics in a style similar to that of Fig. 3 were developed to prove type ad-
herence of Erlang expressions. With these tactics we could automatically prove,
for instance, that

16

{ if Store represents a list, then length(Store) results in a number,
{ if Store represents a list and PacketSize a number, then PacketSize =<

length(Store) results in a boolean, and
{ appending two lists results in a list.

These sorts of tactics were used to bring down the complexity of the proof by
reducing large proof goals to smaller ones which could eventually be completed
using one of these tactics.

5.4 Using the Tool in Practice

Mixing automated and interactive veri�cation in the manner we propose puts
very considerable demands on the user interface, to aid users control of possibly
very large proofs. The tactic programming language gives a lot of help, providing
facilities for naming and retrieving nodes, and for de�ning search and navigation
procedures. The simple tactics we developed for \model checking", type check,
and termination, turned out to be surprisingly robust, requiring little adaptation
even for quite substantial modi�cations to the functions and properties being
checked. In our case study so far we have proved a number of properties for the
ring process, and for various approximations of it in the style of Ex. 2. The most
sophisticated of those proofs contains about 2000 proof nodes, of which two-third
has been generated automatically. We also proved a version of the composition
property as stated in (7). This proof uses in the order of 700 nodes, and so far we
have not mechanized this. It is representable of a kind of proof which we expect
to be able to mechanize almost completely in the future. To help visualisation we
interfaced our tool to the daVinci graph display facility [FW94]. Small graphs,
less than 1000 nodes, are easily displayed by daVinci, and it provides good help,
for instance in debugging proof tactics. For larger proofs graphs really need to
be displayed incrementally (not very well supported currently) or in segments,
to avoid excessive delays.

6 Conclusions

Our report is a tentative one, reporting more on qualitative than quantitative
experiences with the use of a novel approach to code veri�cation for distributed
systems. The report must be a tentative one, since there really are not many tools
or proof approaches around with a similar scope of addressing dynamic process
networks on the level of actual running code without resorting to approximate
techniques. The database lookup manager which we addressed was about 200
lines of code and explored most \core" features of the Erlang language includ-
ing list and number processing, communication, and dynamic process creation.
Experience with Erlang at Ericsson has indicated that | as a rule of thumb |
one line of Erlang code corresponds to six lines of C.

A central issue on which we have as yet little to say is scalability. Since
our proof system is highly compositional it is actually realistic to hope to reuse

17

proofs together with their associated code modules. As yet, however, we have
little practical experience with this.

The proof approach which we follow requires user intervention. We have
developed tactics which are quite robust and manage to produce large parts
of proofs without any user intervention at all. Moreover it is quite realistic in
many cases to hope to automate almost the entire proof search process, even
in cases when model checking-like techniques fail. The critical point at which
user intervention is really essential is, of course, in the identi�cation of inductive
assertions. In the example studied here this was not at all easy. A particular
source of headache was the handling of process identi�ers which in Erlang play
a role not unlike names in the �-calculus. Even though our handling of process
identi�ers (pids) and pid creation in Erlang is as yet imperfect, the tool was
able to assist the identi�cation of inductive assertions quite substantially, by
having tactics which were suÆciently robust to often accomodate smaller formula
modi�cations completely automatically.

Acknowledgements

Hans Nilsson deserves our special thank for bringing forward the veri�cation
problem we considered in this paper and for the time he spent in explaining
us the details. We should like to thank Lars-�Ake Fredlund for his helpful hints
and his constant support for the proof system. We thank Gena Chugunov for for
digging into some nasty details of the proof. The second author was supported by
the Swedish National Board for Technical and Industrial Development (NUTEK)
through the ASTEC competence centre.

References

[AVWW96] J. Armstrong, R. Verding, C. Wikstr�om and M. Wiliams, Concurrent Pro-
gramming in Erlang. 2:nd edition, Prentice-Hall, 1996.

[ADFG98] T. Arts, M. Dam, L-�A. Fredlund, and D. Gurov, System Description: Ver-
i�cation of Distributed Erlang Programs. In Proceedings 15th Conference

on Automated Deduction, LNAI 1421, p. 38{42, July 1998.
[Cri95] R. Cridlig, Semantic Analysis of Shared-Memory Concurrent Languages

Using Abstract Model Checking. In Proc. PEPM'95.
[Dam95] M. Dam, Compositional proof systems for model checking in�nite state

processes. In Proceedings CONCUR'95, LNCS 962, p. 12{26, 1995.
[DFG98] M. Dam, L.-�A. Fredlund and D. Gurov, Toward Parametric Veri�cation of

Open Distributed Systems. To appear in: H. Langmaack, A. Pnueli, W.-P.
De Roever (eds.), Compositionality: The Signi�cant Di�erence, Springer
Verlag, 1998.

[DFH+] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-
Mohring, and B. Werner. The Coq proof assistant user guide, Technical
report, INRIA-Rocquencourt, May 1993.

[FW94] M. Fr�ohlich and M. Werner. The graph visualization system daVinci {
a user interface for applications. Technical Report 5/94, Department of
Computer Science, Bremen University, 1994.

18

[Koz83] D. Kozen, Results on the propositional �-calculus. Theoretical Computer

Science, 27:333{354, 1983.
[Lego] http://www.dcs.ed.ac.uk/home/lego/

[Mnesia] C. Wikstr�om, Hans Nilsson and H�akan Mattson, Mnesia Database Man-
agement System, In Open Telecom Platform users manual, Open Systems,
Ericsson Utvecklings AB, Stockholm, Sweden, 1997.

[Nil99] H. Nilsson, Patent application, 1999.
[Par76] D. Park, Finiteness is mu-ine�able. Theoretical Computer Science, 3:173{

181, 1976.
[Pau94] L. C. Paulson. Isabelle: A Generic Theorem Prover, LNCS 828, 1994
[ROS92] J. Rushby, S. Owre and N. Shankar. PVS: A prototype veri�cation system.

In Proceedings 11th Conference on Automated Deduction, LNAI 607, pp.
748{752, 1992.

[Sha96] N. Shankar. PVS: Combining speci�cation, proof checking, and model
checking. In Proceedings of Formal Methods in Computer-Aided Design,
LNCS 1166, pp. 257{264, November 1996.

19

