
Towards Industry Strength Worst-Case

Execution Time Analysis

Jakob Engblom? Andreas Ermedahl? Mikael Sj�odin?

Jan Gustavssony Hans Hanssony

April, 1999

? Department of Computer Systems, Uppsala University, Sweden
http://www.docs.uu.se/,
fjakob, ebbe, micg@docs.uu.se
Technical Report# DoCS 109
Astec Report# 99/02

y M�alardalen Real-Time Research Center, Sweden
http://www.mrtc.mdh.se/,
fjgn, hang@idt.mdh.se
Technical Report# MDH-MRTC{2{SE

Abstract

The industrial deployment of real-time modeling and analysis techniques such as
schedulability analysis creates an urgent need for methods and tools to calculate the
execution time of real-time software. Recent advances in this area are promising,
but there is yet no integrated solution taking into account the multitude of aspects
relevant for execution time analysis in an industrial context.

In this article we present an architectural framework for execution time analysis.
The framework is modular and extendible, in that interfaces and data structures are
clearly de�ned to allow new modules to be added and old ones to be replaced, e.g.,
making it possible for analysis modules for di�erent CPUs to share the same program
ow analysis modules.

The architecture is intended to be included in an integrated development environ-
ment for real-time programs thereby allowing engineers to integrate execution time
analysis in their everyday edit-compile-test-debug cycle.

In addition to presenting the architecture, we demonstrate that the proposed ar-
chitecture is general enough to integrate existing execution time analysis techniques.



1 INTRODUCTION 1

1 Introduction

An increasing number of vehicles, appliances, power plants, etc. are controlled by computer
systems interacting in real-time with their environments. Since failure of many of these
real-time computer systems may endanger human life or substantial economic values, there
is a high demand for development methods which minimize the risk of failure.

During the last decades schedulability analysis has been developed to support the de-
velopment of real-time system [ABD+95, SSNB95]. Schedulability analysis is performed �a
priori to ensure that a set of processes running in a computer system will always meet their
deadlines. Today, schedulability analysis has matured to a degree where it is practically
useful in an industrial engineering context [CRTM98]. One of the key components in the
software abstraction used to perform schedulability analysis is the Worst-Case Execution

Time (WCET) of software components. Knowledge of the WCET is also useful in mod-
eling, simulation and formal veri�cation of time critical systems, when implementing time
critical sections of code or when tuning the performance of a program.

While modern schedulability analysis dates back to the 70's [LL73], the problem of
determining a program's WCET (called WCET analysis) remained largely untackled until
the late 80's [PK89]. During the last few years WCET analysis has been studied with an
increasing intensity by a number of research groups around the world. The vast majority
of existing results are focused on some particular subproblem of WCET analysis, e.g.
semantical analysis to determine the possible set of worst case paths [CBW94, EG97,
HSRW98, PS90, PS95], or modeling of architectural features such as pipelines and caches
[FMW97, HAM+99, LMW96, LBJ+95, LS98, OS97].

The advances in WCET analysis, together with the demand for WCET estimates re-
sulting from the industrial deployment of real-time scheduling techniques, makes it both
possible and appropriate to introduce WCET analysis in an industrial development context.
(Not withstanding that there still are many interesting technical challenges to address.)
The vision of our research group is to create a WCET tool which will be accepted and
used by real-time practitioners. We are convinced that this requires WCET analysis to
be integrated with program development as a natural part of the edit-compile-test-debug
cycle.

A WCET tool should ideally be a component in an integrated development environ-
ment, making it a natural part of the real-time programmers' tool chest, just like pro�lers,
hardware emulators, compilers, and source-code debuggers. In this way, WCET analy-
sis will be introduced into the natural work-ow of the real-time software engineer. To
this end we are cooperating with IAR Systems (Uppsala, Sweden), an embedded systems
programming-tools vendor. IAR Systems and our focus is on embedded systems. Meth-
ods for these type of systems must allow for a multitude of di�erent hardware variants
to be analyzed, since embedded systems capabilities range from 8-bit CPUs with a few
hundred bytes of memory to 32-bit RISC processors with pipelines, caches and megabytes
of memory.

Today, most embedded systems are programmed in C, C++ and assembly language
[SKO+96]. In the future more sophisticated languages, like Ada and Java, are likely to



2 OVERVIEW OF WCET ANALYSIS 2

be more widely used. Thus, since imperative languages are dominant in the embedded
systems market, we limit ourselves to these languages, but make no assumptions about
which speci�c language.

In this article we present an architecture for a WCET analysis tool, with the purpose of
creating a framework which allows available pieces of WCET analysis to be integrated and
missing pieces to be identi�ed. The architecture should be general enough to be able to
incorporate and reuse the work of other researches in the �eld, without sacri�cing precision
in the analysis for the sake of generality. The architecture should also allow less precise
WCET analysis, to shorten the analysis time in cases when a less accurate estimate can
be tolerated or to facilitate faster re-targeting to new hardware platforms.

To our knowledge only one other complete architecture for WCET analysis has been pre-
sented in the literature [HAM+99]. However, this architecture does not explicitly consider
the integration of di�erent methods for solving various subproblems of WCET analysis.

The main contributions of this article are the following:

� We present a general architecture for WCET analysis, incorporating both source-code
oriented program-ow analysis and target-machine speci�c low-level analysis.

� We present the state-of-the-art WCET research results and illustrate how these can
be integrated into the proposed architecture.

� We provide well-de�ned interfaces between the modules of our architecture. This
facilitates modular extensions and upgrading of WCET tools built upon the archi-
tecture, which in turn allows qualitative comparisons between di�erent approaches
to the various subproblems of WCET analysis.

Article Outline: We start, in Section 2, with an overview of the WCET analysis
process, and in Section 3 we present our architectural framework for WCET analysis. In
sections 4 to 7 we present the components of the architecture in greater detail, and show
how current WCET analysis techniques �t into our architecture. Section 8 outlines our
future plans, and in Section 9 we give some concluding remarks.

2 Overview of WCET Analysis

The goal of WCET analysis is to generate a safe (i.e. no underestimation) and tight (i.e.
small overestimation) estimate of the worst-case execution time of the program. A related
problem is that of �nding the Best-Case Execution Time (BCET) of a program. BCET
values are sometimes of interest, e.g. in limiting the jitter in schedulability analysis, but
will not be considered further in this paper since BCET analysis is similar to WCET
analysis and since WCET is the primary concern for real-time systems. See Figure 1 for
an illustration of WCET, BCET, tightness, and safe estimates.

When performing WCET estimation we assume that the program execution is un-
interrupted (no preemptions or interrupts) and that there are no interfering background
activities, such as direct memory access (DMA) and refresh of D-RAM. Timing interference



3 ARCHITECTURAL OVERVIEW 3

actual
BCET

actual
WCET

possible execution times
safe WCET
estimates

safe BCET
estimates

tighter tighter
time

0

Figure 1: The relation between WCET, BCET, and possible program execution times.

caused by this type of resource contention is postponed to the subsequent schedulability
analysis [BMSO+96, LHS+96].

To give an intuition for how WCET analysis is performed, we will follow the work ow
of a program from source code to the �nal WCET estimate. The �rst step is to compile
the source code into object code.

In order to determine the worst-case execution time of the program, we need to analyze
the program ow. This gives us ow information that provides information about which
functions get called, how many times loops iterate, etc. The ow analysis can either be
performed in conjunction with the compilation of the program, e.g. by a special compiler
module analyzing the program, or by a separate tool.

The worst-case execution time of the program depends on both the ow of the program
(as reected by the program ow information) and the object code. The object code
is (conceptually) partitioned into basic blocks1. The ow information determines how to
sequence the basic blocks to form the \worst-case execution" of the program.

In order to calculate the worst-case execution time, we need to determine the execution
time for each basic block. Unfortunately, contemporary hardware features like pipelines,
caches, and branch predictors make this quite complicated. For older micro-controllers like
the Z80 [ZiL95] and 8051 [Int94], each instruction has a �xed execution time and the exe-
cution time of a basic block can be determined by simple addition. For modern CPUs, the
instructions typically have a variable execution time, e.g. for a pipelined CPU, the execu-
tion time of an instruction varies with the amount of overlap with neighboring instructions.
For a CPU with cache memory, the time required for memory accesses depends on whether
the accessed memory word is in the cache or not. Tight WCET analysis requires these
types of hardware features to be taken into account. Determining the execution time of
basic blocks is known as low-level analysis.

Finally, the WCET for the entire program is calculated by �nding the program path
that takes the longest time, given the constraints of the ow information and the execution
time of each basic block from the low-level analysis.



3 ARCHITECTURAL OVERVIEW 4

Low-Level Analysis

Program data

Program Sources

Global Effects
Analysis

Local Effects
Analysis

Timing
Graph

Calculation

WCET

Simulator

External
Component

WCET Tool
Component

Data
Item

Libraries

Object-Code
Flow Analysis

Assembler

Program
Source Code

Assembly
LanguageCompiler

High-level
Language

High-Level
Flow Analysis

User
Annotations

Context
Tree

Object
Code

Context
Tree

Annotation
Language

Legend:

Figure 2: Our architecture for a WCET analysis tool

3 Architectural Overview

This section presents an overview of our proposed architecture for WCET analysis. The
architecture integrates a variety of tools and methods in order to accommodate many
di�erent development scenarios. An illustration of the architecture is shown in Figure 2.

The architecture allows program sources (input) to be given in a combination of high-
level language code, assembler code, and annotations. From these inputs, object code and
a context tree containing the program ow information is generated. Low-level analysis is
then applied to generate a timing graph (containing execution times for basic blocks and
executable program paths) from which the WCET can be calculated.

In the following subsections, we will introduce the components in the architecture. A
more detailed discussion on methods and data structures is left to Sections 4 to 7.

We will use the the example program in Figure 3 to illustrate the process of WCET
analysis in our architecture. Note that the chip we have used in the example, the NEC
V850 [NEC95], has both 16- and 32-bit instructions. Also note that the loop has been
compiled into a do-while-loop, since it always iterates at least once. For the ow analysis,
we assume that the parameter j is limited to the range [1::10] (this information could be
provided by the user, or by automatic program analysis).

1A basic block is a piece of code that is executed in sequence (contains no jumps or branches, and there
are no jumps into the sequence).



3 ARCHITECTURAL OVERVIEW 5

void foo(int j,int a[])

f
int i;

for(i=100; i>0; i--)

f
if(j>50)

a[i] = 2*i;

else

a[i] = i;

j++;

g
g

L1:

0x1000 ADDI 400,r5,r7

0x1004 MOV 100,r6

L2:

0x1008 CMP 50,r1

0x100C BLE L4

L3:

0x100E MOV r6,r5

0x1010 SHL 1,r5

0x1012 ST.W r5,(+0)[r7]

0x1016 BR L5

L4:

0x1018 ST.W r6,(+0)[r7]

L5:

0x101C ADD 1,r1

0x101E ADD -1,r6

0x1020 ADD -4,r7

0x1022 CMP zero,r6

0x1024 BGT L2

L6:

0x1026 JMP [lp]

(a) C code (b) V850 Assembler code

Figure 3: C-code with corresponding assembler code

3.1 Program Sources

The program sources are anything that might generate object code and/or ow information.
In Figure 2 we have included the most common sources.

� A compiler converts high-level language code into object code. To make it possible
to take advantage of the program analysis performed by the compiler, we include
a ow analysis module which collects information from the compiler and performs
WCET-speci�c program analysis based on the collected information. The ow anal-
ysis module should be tightly coupled to the compiler, in order to facilitate tracing of
the e�ects of compiler optimizations and to take advantage of the compiler's program
analysis.

� An assembler converts assembler source code into object code. In our view, an
assembler is a rather dumb system that cannot provide ow information for the
code. Instead, manual annotations or object code ow analysis is used to provide
ow information for the assembler code.

� Libraries are provided by compiler vendors, operating system vendors, and other
third party providers. In order to make use of libraries in WCET-analyzed programs,
we must have information of the program ow in the libraries. Flow information is
either speci�ed by the library provider, or deduced from the object code using object-
code ow analysis.



3 ARCHITECTURAL OVERVIEW 6

foo (1)

foo/loop (1)

function bar (1)

function foo (1)
function fub (1)

foo/loop (1)

function foo (2)

foo/loop (2)

function buf (1)

(a) Context tree for the example from Figure 3. (b) A more complex context tree.

Figure 4: Context trees

� User annotations is a simple way to get information about the ow of a program.
The programmer manually provides information about the program ow.

We aim to accommodate all ways in which program code and ow information may
enter a project. Most industrial programming projects include a mix of hand-written
assembler code, high-level language code, and libraries. Hence, an industrial WCET tool
must support the integration of code from several di�erent sources in the same program.

3.2 Object-Code Flow Analysis

One way to obtain program ow information is to perform analysis on the object code.
Performing analysis on the object code level makes sense for programs containing a high
proportion of assembler code.

For programs compiled from high-level code, object code analysis is likely to give a
worse result than analysis in conjunction with the compilation process, since most of the
information inherent in the source code is thrown away when object code is generated.
It is (much) harder to understand the intents of the programmer from the compiled and
optimized object code. However, object-code ow analysis can be used in cases where it is
impossible to modify the compiler to access its internal data.

3.3 Program Data

All information about the program to be analyzed is gathered in the Program Data data
structure, see Figure 2 on page 4. The program data consists of two parts, the object code
and the context tree (containing ow information).

Following the ideas by [FMW97, HAM+99], we view a program as a tree of function
calls and loops (and maybe other types of ows). We call each node in this tree a context.
The tree is called a context tree.

The contexts allow us to distinguish between di�erent environments in which a certain
basic block can be executed. For example, two di�erent calls to the same function may



3 ARCHITECTURAL OVERVIEW 7

L3 L4

L5

L6

L1

L2

C
on

te
xt

: f
oo

 (
1)

C
on

te
xt

: f
oo

/lo
op

 (
1) if (j>50)L2

a[i]=2*iL3 a[i]=iL4

if (i!=0)L5

max=100

max=59 max=50

(a) The ow graph for function foo (b) Context and analysis results for foo/loop(1)

Figure 5: Flowgraph and contexts for the example function.

have very di�erent executions (and thus very di�erent execution times) depending on the
values of the function arguments. Loops are often considered as contexts.

Each context contains a list of the basic blocks belonging to the context, and the ows
between them (as illustrated in Figure 5(b)). Furthermore, information about limits to
the ow, like loop bounds and mutually exclusive paths can be added (e.g. based on
information from the ow analysis).

The context tree for the example program in Figure 3 is shown in Figure 4(a). Note that
the loop is a context of its own, and that the nodes are numbered to indicate the possible
existence of other instances of the function and the loop, as illustrated in Figure 4(b).
The ow graph (the structure of the object code) for our example program is shown in
Figure 5(a). Figure 5(b) shows the content of the loop context (the node foo/loop(1) in
the tree in Figure 4(a)). The context includes information from the program analysis: the
loop iterates at most 100 times (the information about block L2), the branch L3 is taken
at most 59 times, and L4 at most 50 times (this is a consequence of limiting the value of
j to [1::10]).

3.4 Low-Level Analysis

As described in Section 2, the purpose of low-level analysis is to determine the execution
time for each basic block in the program. We partition low-level analysis into global and
local e�ects analysis, presented below.

3.4.1 Global E�ects Analysis

The global e�ects analysis considers the execution time e�ects of machine features that
may reach across the entire program. Examples of such factors are instruction caches, data
caches, branch predictors, and translation lookaside bu�ers (TLBs) [HP96].



3 ARCHITECTURAL OVERVIEW 8

L1: Cache line 0

0x1000 ADDI 400,r5,r7

0x1004 MOV 100,r6

L2: Cache line 1

0x1008 CMP 50,r1

0x100C BLE L4

L3:

0x100E MOV r6,r5

0x1010 SHL 1,r5 Cache line 2

0x1012 ST.W r5,(+0)[r7]

0x1016 BR L5

L4: Cache line 3

0x1018 ST.W r6,(+0)[r7]

L5:

0x101C ADD 1,r1

0x101E ADD -1,r6

0x1020 ADD -4,r7 Cache line 0

0x1022 CMP zero,r6

0x1024 BNE L2

L6:

0x1026 JMP [lp]

Figure 6: Cache layout of example program.

The global e�ects analysis uses the object code of the program and the ow informa-
tion in the context tree to extend the context tree with the execution time e�ects of the
considered machine features. It is sometimes necessary to add new contexts to express
certain timing e�ects.

As an illustration, consider the example program in Figure 3 and a target CPU having
an instruction cache with a cache line size of eight bytes, and four cache lines. The cache
layout for the example program is shown in Figure 6.

The result of cache analysis for this example in the style of [FMW97] is shown in
Figure 7. Each instruction has been categorized as either a cache hit or a cache miss. The
cache analysis splits the loop into two contexts, \�rst iteration" and \successive iterations".
We have highlighted four hits in the \successive iterations" that were misses in the \�rst
iterations".

3.4.2 Local E�ects Analysis

The local e�ects analysis handles machine timing e�ects that depend on a single instruction
and its immediate neighbors. Examples of such e�ects are pipeline overlap (see for example
[LBJ+95]) and memory access speed.

The local e�ects analysis takes the context tree from the global e�ects analysis and the
object code for the program, and generates the timing graph. In the timing graph, each



3 ARCHITECTURAL OVERVIEW 9

The call to the
function foo

Successive
iterations of the
loop

First iteration
of the loop

miss
hit

L1A

miss
hit

L2B

hit
miss
hit
hit

L3C missL4D

miss
hit
miss
hit
hit

L5E

hit
hit

L2F

hit
miss
hit
hit

L3G hitL4H

hit
hit
hit
hit
hit

L5I

hitL6J

hitL4H

Name of basic block
Name of node in the timing graph

Instruction cache
hit or miss

Figure 7: The results of the cache analysis for the example program.

basic block is present in a copy for each context in which it occurs, since it may have a
di�erent execution time for each context.

The calculation of concrete execution times is performed by sending the code to be
executed to a simulator for the target architecture. For each basic block, the simulator is
provided with an execution scenario. The execution scenario provides information about
the execution of each instruction in the basic block, like whether the instruction hits or
misses the instruction cache (as generated by the global e�ects analysis), the speed of
the memory accessed, and operand values (from the ow analysis). Whenever a piece of
information is missing, worst-case assumptions are used.

3.5 The Simulator

The simulator used in the local e�ects analysis could be tailor-made for WCET analysis,
but preferably, it is a standard simulator provided by the hardware vendor, as part of the
compiler, or by a third party simulator specialist.

The simulator should be trace-driven and cycle-accurate, but it does not need to emulate
the semantics of the instructions, since program semantics is handled by the ow analysis.
For the low-level analysis, only execution times are of interest.



3 ARCHITECTURAL OVERVIEW 10

xa
ta=11

xb
tb=12

xc
tc=17

xd
td=14

xe
te=20

xj
tj=5

A

B

C D

E

xf
tf=7

xg
tg=17

xh
th=9

xi
ti=10

F

G H

I

J

xb + xf = 100

xd + xh � 50

xc + xg � 59

xa = 1

(a) The graph part (b) Associated ow

Figure 8: The timing graph for the example program.

3.6 The Timing Graph

The timing graph combines the program ow with the basic block execution times. Each
node in the timing graph corresponds to an execution scenario and has an associated
execution time (tblock). The execution scenario is provided by the context tree { one
execution scenario is generated for a basic block for every context in which it occurs.

For pipelined CPUs, the execution time is the time to execute the basic block in iso-
lation. The overlap with other basic blocks is represented by gain terms on the edges
connecting the two blocks (gedge), as described in [OS97].

The program ow information is expressed by constraints on the execution count vari-
ables (xblock) for edges and basic blocks.

The timing graph for our example program is shown in Figure 8. Figure 8(a) shows the
graph with nodes, edges, and execution times (for simplicity, we have excluded the gain
terms). Figure 8(b) shows the constraints on the ow. Note that the loop iteration count
from Figure 5 (max 100 iterations) has been translated into the constraint xb + xf = 100
(the total number of executions of the basic blocks B and F is equal to 100), since the loop
has been split into two contexts in the cache analysis.

3.7 Calculation

The calculator determines the �nal execution time for a program by solving the optimiza-
tion problem obtained by maximizing a goal function derived from the timing graph. The
goal function is the sum of all execution count variables multiplied with their respective
execution times2:

2the gains are subtracted since the imply a speedup



4 FLOW ANALYSIS 11

Structural

xa = xab

xb = xab = xbc + xbd

xc = xbc = xce

xd = xbd = xde

xe = xce + xde = xef

xf = xef + xif = xfg + xfh

xg = xfg = xgi

xh = xfh = xhi

xi = xgi + xhi = xij + xif

xj = xij

Flow

xb + xf = 100

xd + xh � 50

xc + xg � 59

xa = 1

Times

ta = 11

tb = 12

tc = 17

td = 14

te = 20

tf = 7

tg = 17

th = 9

ti = 10

tj = 5

Gains

gab = 4

gbc = 4

gbd = 3

gce = 3

gde = 8

gef = 3

gif = 3

gfg = 4

gfh = 3

ggi = 4

ghi = 4

gij = 4

Figure 9: Constraint set for example program.

X

8block

xblock � tblock �
X

8edge

xedge � gedge

This is known as the Implicit Path Enumeration Technique (IPET) [PS95].
The constraint set for our example program is shown in Figure 9. We have divided

them into the following categories (from left to right in the �gure): structural constraints
(derived from the structure of the code), ow constraints (expressing limits to the program
ow), execution times for basic blocks, and gains for edges. The structural constraints are
used to represent the structure of the program ow graph (see e.g. [PS95]). In short, the
number of paths entering a basic block is equal to the number of paths exiting the basic
block.

Note that the basic block times and edge gains is based on the following assumptions:
the CPU uses the V850E pipeline [NEC95], cache misses delay instruction processing by
�ve cycles, and data memory accesses take �ve cycles in the MEM stage and do not interfere
with instruction accesses3.

4 Flow Analysis

The task of the ow analysis is to identify the possible ways a program can execute. The
ow analysis gives us information about the program ow which is used in later stages
of the WCET analysis. To facilitate a tight WCET estimate the ow analysis should

3The V850 chip does not include a cache. We have assumed one for illustration purposes.



4 FLOW ANALYSIS 12

be context sensitive, i.e., it should take advantage of the fact that variable values and
parameters often have known values in a given context.

The ow information includes information about the maximum looping in the program
(which is mandatory, since the WCET would otherwise be in�nite), and information about
infeasible paths (e.g. paths that cannot be executed because of data dependencies). Infor-
mation about infeasible paths is used to make the analysis tighter, and is desirable but not
mandatory.

Flow analysis can be carried out both on the object code and on the source code. In
this section, we concentrate on the later approach, since better results can be obtained by
analyzing the source code. This is often called high-level analysis in the literature.

In many WCET analysis methods [CBW94, LMW96, PS93, TF98], the ow information
is given by manual annotations, i.e. extra information about the program ow and/or data
dependencies is provided by the programmer.

We claim that manual annotations are error prone and should be avoided. It is easy
to �nd examples where, e.g., the maximum number of iterations in a loop is diÆcult to
calculate, and where data dependencies are complicated. Furthermore, programmers may
write down what they think the code does, not what it actually does.

In recent years, there has been some research performed to automatically deduce pro-
gram ow information, with the goal of reducing the dependence on manual annotations
[Alt96, Cha95, EG97, HSRW98, HW99]. However, all of these methods are limited in the
types of programs they can handle, and manual annotations probably have to be used in
some cases. For example, the analysis method employed may not calculate the kind of
information needed, or the automatically deduced information is not tight enough. As
anybody who has used a compiler knows, there are cases when programming tools just
cannot �gure out what is blindingly obvious to the programmer.

4.1 Context-Sensitive Calculations

The simplest method for WCET analysis is to calculate just one WCET for a program or a
function, disregarding the fact that the execution time can depend on the input parameters.
This can lead to large overestimations of the WCET, making the result of WCET analysis
less useful.

Instead, we would like the calculations to be context sensitive, i.e., they should take
advantage of the fact that input parameters often have known limits, e.g. there may be
physical limits to the possible values for inputs from the environment or a function may
be determined by the context of the call.

If input data varies between di�erent calls to a function, and if the WCET is not inde-
pendent of the input values, the WCET should be calculated separately for each function
call to yield a tighter WCET estimate. An example of such a function, with a heavy input
dependence, is shown in Figure 12 on page 19.

The limits of input values to the program (values read from hardware sensors, etc.) have
to be given by manual annotations. However, limits on the values of function parameters
and variables inside a context should ideally be calculated automatically.



4 FLOW ANALYSIS 13

An alternative to handle of input sensitivity is to use modes, as presented in [CBW94].
A mode is a constraint specifying sets of input values to a function that cause identical
program ow, which also means identical timing characteristics. However, the modes are
not deduced automatically.

Note that in many cases, functions do not exhibit input-dependent timing behavior.
According to [Eng99], about one third of the functions in a large selection of embedded
real-time programs contained no decisions and would thus have constant execution time
(unless individual instructions can have variable execution time). Such functions could be
analyzed only once, to speed up the analysis process.

4.2 The Maximum Number of Iterations

The ow analysis should calculate a safe and tight approximation of the maximum number
of iterations in loops. Knowing an upper bound for the number of loop iterations for each
loop is required to obtain a �nite WCET value.

For nested loops, the number of iterations of the inner loop should be estimated for
each iteration of the outer loop. This is important to get a tight WCET. However, it might
be hard to represent this information in an eÆcient manner.

The complexity of the loops will determine the diÆculty of the loop bound analy-
sis. In the most general case the automatic detection of the number of loop iterations
is undecidable. In cases where we cannot determine the maximum number of iterations
automatically we have to resort to asking the programmer for guidance (i.e. to provide
manual annotations).

When recursion is used in a program, the maximum recursion depth need to be known
(just as for loops). Recursion is usually avoided when programming real-time applications,
due to potential memory problems and the belief that recursion is harder to understand
and analyze than iteration [Jon99]. However, [Eng99] shows that recursive programs do
occur in embedded real-time programs (even if it is quite uncommon). Our conclusion is
that it is relevant to analyze recursion, but that it is not the most urgent problem to solve.

4.3 Information About Infeasible Paths

Infeasible paths are program paths that cannot be executed. A common form of infeasible
path analysis, employed in compilers, is dead code elimination. In other cases, a piece of
code may not be dead, but certain execution paths involving it may be impossible (given
information about variable values and data dependencies). For example, two if-statements
can be mutually exclusive. If infeasible paths can be excluded from the WCET analysis,
the WCET estimate may become tighter.

An automatic analysis to �nd infeasible paths need not be able �nd each and every
infeasible path. It is safe to miss some infeasible paths, but feasible paths must not be
pointed out as infeasible, since this might lead to an underestimation of the WCET.



4 FLOW ANALYSIS 14

Context Number of Maximum Infeasible
Method sensitive iterations depth of paths

calculations in loops recursion
Uppsala

p p p
1

p
Paderborn

p
York

p
2

p
2

p
2

Florida
p p

3
p

1 The function is supported by the method, but is not implemented.
2 Some manual annotations are needed.
3 The method handles special types of for -loops.

The methods:

Uppsala: Uppsala University and M�alardalen University, Uppsala and V�aster�as, Sweden.
Program analysis (C, Smalltalk/RTT) based on abstract interpretation [EG97,
GE98].

Paderborn: C-LAB, Paderborn, Germany. Program analysis (C) based on symbolic execu-
tion [Alt96].

York: University of York, York, Great Britain. Program analysis (Ada) based on
symbolic execution [Cha94, Cha95].

Florida: Florida State University, Tallahassee, USA. Analysis of certain types of loops
in C [HSRW98, HW99].

Table 1: Overview of ow information calculation capabilities

4.4 Automatic Flow Analysis

Program ow analysis is used extensively in optimizing compilers [Muc97]. However, the
analysis performed in a compiler typically deduces other information than that needed for
WCET analysis, and as a result, there has been some research into WCET-speci�c program
ow analysis. Table 1 gives an overview of the capabilities of some of the ow analysis
developed for WCET analysis.

We will use the example in Figure 3 on page 5 to demonstrate how the Uppsala method
in Table 1 works (abstract interpretation over integer intervals). With this method we
calculate the values of variables, the maximum number of iterations of loops, and infeasible
paths in the program. The results are shown in Figure 10.

The ow analysis calculates these results by performing the following steps:

1. All variables that do not inuence the control ow are identi�ed and ignored in the
analysis (e.g. as by [HW99]). In this case i and j determine program ow but the
array a does not inuence the ow.

2. Input values for the considered variables are accounted for (in this case we assume
that j = [1::10]).

3. The values of the variables are approximated for each program point. This analysis
uses abstract interpretation where integers are represented by intervals. The most
important values are shown in Figure 10.



4 FLOW ANALYSIS 15

void foo (int j, int a[]) j = [1::10]
f
int i; i = [�1::1]
for (i=100; i>0; i--) i = [1::100]; xL2 = 100
f
if(j>50)

a[i] = 2*i; j = [51::109]; 50 � xL3 � 59
else

a[i] = i; j = [1::50]; 41 � xL4 � 50
j++;

g
g i = [0::0]; j = [101::110]

Figure 10: Example program with analysis results

4. The minimum and maximum number of iterations in the loop are calculated, and
the corresponding constraint (xL2 = 100) is generated.

5. The infeasible paths in the program are calculated. In the example program, it is
structurally conceivable that either L3 or L4 are executed on all iterations of the
loop. However, taking the information about the j variable into account allows us
to deduce that L3 can be executed at most 59 times. The corresponding limit for L4
is 50 times.

The information generated about the program ow is included in the �nal timing anal-
ysis (see Figure 9 on page 11). Note that the basic blocks on which the analysis was
performed have been split into several timing graph nodes. E.g., xL2 in Figure 5 on page 7
has been transformed to xb + xf in Figure 8 on page 10.

4.5 Compiler Integration

As mentioned in Section 3.1, the compiler can provide important information for the ow
analysis tool. Integrating the ow analysis with the compiler has several advantages:

� The compiler source-language parser can be used, which makes the ow analysis tool
easier to write. This is the most basic form of compiler-analysis integration.

� The analysis can take advantage of the compiler's information about the program.

� It becomes easier to handle the problems introduced by optimizing compilers.

� The analysis can be performed on the intermediate code used in the compiler.



4 FLOW ANALYSIS 16

4.5.1 Using Program Information

All compilers perform extensive program analysis, in order to generate code and optimize
the programs. The generated information is certainly useful for ow analysis, and making
it available to the ow analysis tool will substantially facilitate the design of this tool.

4.5.2 Handling Optimizations

An important problem for ow analysis is how to handle the optimizations performed by
a modern compiler. For a simple compiler, the source code and the object code have the
same structure, which makes it easy to map the analysis results from the source code to
the object code (this mapping is needed since the ow on the object-code level is used to
calculate the WCET). For an optimizing compiler, the relation is non-trivial: ows can be
changed, introduced, and deleted, and loops can be unrolled, inverted, split, etc.

To overcome this problem, the ow analysis must know how the program has been
optimized. This requires cooperation between the compiler and the ow analysis tool.
Some research has been performed on this [EAE98, LKM98].

4.5.3 Intermediate-Code Analysis

Flow analysis is usually considered to be performed on the source code of a program
(C, Ada, or other high-level languages). This approach has the advantage of making it
easier to understand the programmer's intentions, and facilitating communication with
the programmer about the program. The major disadvantage of performing ow analysis
on the program source code is that it can be quite diÆcult to map the information from
the source code to the object code, especially in the presence of optimizing compilers (as
discussed above).

The most extreme alternative is to perform the ow analysis on the object code, which
makes the mapping problem disappear. However, the object code contains much less
information than the source code, which makes an object-code analysis potentially less
exact.

A novel solution to the problem is to perform the ow analysis on the compiler's inter-
mediate representation of a high-level program. This has several advantages:

� The intermediate language is typically simpler than the source language. Error check-
ing, preprocessing, and other complex source language processing has already been
performed.

� The intermediate code contains all the information from the source code. No infor-
mation is lost, as is the case with the object code.

� The intermediate code has the same structure as the �nal object code (provided that
we perform the analysis after optimizations have been performed).



5 THE CONTEXT TREE 17

� Program constructs that may cause complex processing invisible on the source code
level (e.g. array assignments, where loops or library function calls may be generated)
are made explicit, allowing them to be analyzed together with the rest of the program.

� Many compiler products use the same intermediate language for several source lan-
guages (for example Digital's GEM compilers [BCD+92]), and thus the ow analysis
would not be tied to a certain high-level language.

5 The Context Tree

The context tree is the central depository for program ow information, and reects the
dynamic execution characteristics of the program. The de�nition of what constitutes a
context depends on the analysis methods employed. Our architecture does not specify
which de�nition to use.

For example, in the WCET analysis presented by [HAM+99], the contexts are loops and
functions. In the cache analysis presented by [FMW97], loops and recursive functions are
split into their �rst and other iterations, leading to four di�erent types of contexts (loop
�rst, loop other, function call, and recursive function call). Alternatively, the context tree
could store information on the form of a timing schema [LBJ+95, PS90, PK89], where the
nodes correspond to loops and conditional statements.

Given a reasonable de�nition of contexts, the context tree is much smaller than a
complete unrolling of the execution of the program. Using one node (a loop context) to
represent all iterations of a loop, for example, is much more compact than representing
each iteration separately.

All ow analysis methods used in the WCET analysis must agree on the de�nition
of a context. An analysis method may use some other internal program representation,
but it should store its results in a context tree using the same context de�nition as the
other WCET analysis modules. Note that the context tree only contains info useful to the
succeeding analyses.

Regardless of the de�nition of a context, our architecture speci�es that each context
must contain the following information:

� An entry node.

� A �niteness limit.

� The code belonging to the context.

In addition, a context can contain optional information to make the WCET analysis
tighter.

The context tree as presented here is powerful and exible enough to handle the ow
information generated by the leading WCET analysis methods.



5 THE CONTEXT TREE 18

5.1 Flow Information

There are two kinds of ow information: �niteness limits (for example loop bounds), and
optional information intended to tighten the analysis (for example infeasible paths).

The �niteness limit is expressed as a limit on the number of times the entry node can
be executed for each time the context is entered. The purpose of this limit is to guarantee
that the context tree represents a �nite execution of the program. This means that a loop
context must have the loop header (the �rst block in the loop) as its entry node.

The optional ow information (such as infeasible paths) is intended to limit the set
of possible executions, making the WCET analysis tighter. An example of optional ow
information is the bounds on the number of executions of blocks L3 and L4 in Figure 5 on
page 7.

Context: function bar

Name of basic block in
object code

Entry point of context

X

Context: loop in bar

B4

B3

B5

entry node
max=15

e2

B2 B8

B6

B1
B9

e1

Context:
function
fub

e3

Figure 11: Example loop context

Figure 11 shows an example context, with fragments of the surrounding context, and
a subordinate context (whose content is not shown). The entry node is B2, and it has a
�niteness limit (max=15).

5.2 Information for Low-Level Analysis

For the purpose of low-level analysis, each context contains the basic blocks included in
the context, and their connecting edges4. Some edges may exit the context, leading either
to speci�ed basic blocks in surrounding contexts, or to the entry point of some sub-context
(for example, edge e1 in Figure 11 points to the entry for the loop context, and edges e2
and e3 exit contexts).

It is also possible to specify information contributing to the execution scenarios of the
basic blocks. For example, for a CPU where instruction execution times varies depending
on operand values, limits on possible operand values could be entered into the context.

4This is most eÆciently implemented by references to the object code.



5 THE CONTEXT TREE 19

short doop(enum OP op, short a, short b)

f
switch(op) f

case PLUS:

return a + b;

case MINUS:

return a - b;

case TIMES:

return a * b;

... etc.

g
g

Figure 12: Example function with contextually dead code.

Each context corresponds to a certain concrete execution of a part of the program, and
contains the basic blocks executed in that part of the program. Figure 5 on page 7 shows
how a loop context contains copies of the blocks in the loop.

The set of basic blocks in a context need not be the complete set of basic blocks in
the ow graph for the function or loop. Consider the function in Figure 12, where the op
parameter is used to select one action from many possible. If the value of op was known
to be PLUS for a particular function call, we would only need to include the code for the
PLUS operation in the context. This is an example of context-sensitive ow analysis.

5.3 Unstructured Flow Graphs

Note that in order to handle some programs, we will need to have contexts for unstructured
ow graph fragments (see [Muc97], page 196).

As shown by [Eng99], unstructured ow graphs do occur in real embedded real-time
programs5. No WCET analysis method in the literature allows unstructured ow graphs.

B C

D

A
Unstructured loop

Figure 13: A simple unstructured loop

The main problem is with unstructured loops. As illustrated in Figure 13, such loops

5The unstructured ow graphs were both written by the programmer and generated by compiler opti-
mizations.



6 LOW-LEVEL ANALYSIS 20

have no well-de�ned header node, since they can be entered at several places. We plan to
handle such unstructured loops by duplicating the loop: we use one context containing the
code for the unstructured loop for each entry to the loop, and thus we obtain the single
entry node needed to create a context.

6 Low-Level Analysis

The purpose of low-level analysis is to account for hardware e�ects on the execution time.
The clear separation of program ow analysis from the hardware dependent low-level anal-
ysis allows each analysis to be specialized for its target problem domain. For example, the
ow analysis can be performed without considering the hardware timing characteristics.

6.1 Global E�ects Analysis

The global e�ects analysis handles machine features that must be modeled over the whole
program to be correctly predicted. The global analysis determines how global e�ects a�ects
the execution time, but it does not generate concrete execution times.

6.1.1 Separation of Global and Local Analysis

Our architecture assumes that all global e�ects are determined before we enter the local
e�ects analysis. Thus, we assume that the results of global analysis do not depend on, for
example, the exact state of the pipeline for a certain instruction. In addition, we require
a well-de�ned worst case for each global e�ect, e.g., that a cache miss is always worse
than a cache hit, etc. In case these assumptions do not hold, we can resort to modeling
a "guaranteed" worst case, where we use a slight overestimation to produce a safe WCET
estimate.

Some low-level analysis approaches have integrated the analysis of local and global
e�ects [LBJ+95, OS97], while our approach is more reminiscent of [HAM+99, TF98], where
the analysis of caches is performed as a separate stage.

6.1.2 Instruction Cache Analysis

Instruction cache analysis is the most well known example of global e�ects analysis, e.g.,
described in [HAM+99]. Their approach is to categorize each instruction cache access
into one of the following categories: �rst-miss, always-miss, �rst-hit and always-hit. The
analysis distinguishes between the �rst and successive executions of an instruction within
a loop. A �rst-miss categorization means that the �rst execution of an instruction will
generate an instruction cache miss, while in all successive executions the instruction will
be in the cache. An always-hit categorization means that the instruction always will be in
the cache.



6 LOW-LEVEL ANALYSIS 21

Our categorization of the instruction in the L4 block in the context graph in Figure 7
corresponds to the �rst-miss categorization and the �rst instruction in the L3 block corre-
sponds to an always-hit.

Other research groups have extended instruction cache analysis to include associative
caches [WMH+97, Mue97a, FMW97], nested loops [Mue97b, TF98], and multi-level caches
[Mue97b].

Note the categorization of the second instruction in the block L3 given in Figure 7 on
page 9. The classi�cation is made accordingly to the methods outlined in [HAM+99, TF98]
which are iteration-based loop analyses. I.e., since we can't know if the instruction has been
referenced during its �rst iteration in the loop we must safely classify it as an instruction
cache miss in both the �rst- and successive loop contexts. We would really like to classify
the instruction as a �rst-reference-miss. Thus, after the �rst reference of the instruction
we know that it always will be in the cache. We therefore conclude that the iteration-based
instruction categorization is sometimes pessimistic and a tighter timing estimate can be
achieved if we do a reference-based instruction cache analysis.

6.1.3 Other Global E�ects Analyses

In addition to instruction cache analysis other hardware features that can be analyzed in-
clude data caches, uni�ed caches, translation lookaside bu�ers, dynamic branch predictions
and dynamic speculative executions [HP96].

Data cache analysis has been proposed in [WMH+97, Whi97]6. The results can typically
be formulated as \every i :th execution of an instruction will generate a data cache miss".
As an illustration consider the example program in Figure 3 on page 5. Assuming that we
have an 8 word data-cache line and no conict between A[i] and the other data-items (i
and j), a data cache analysis should report that every 8:th reference to A[i] will generate
a data-cache miss. This is expressed in the context graph by annotating the instruction
referencing A[i] as a \miss once, hit seven" data cache reference.

6.1.4 Changing the Context Tree in Global E�ects Analysis

The global e�ects analysis may change the context tree from the program data. The most
common change will be to add contexts in order to express the execution time e�ects of
certain global factors.

The basic idea behind the context tree is to distinguish between the various contexts in
which a basic block can be executed. Two di�erent contexts for the same basic block are
supposed to reect some di�erence in the execution of the basic block. Such di�erences can
occur both due to program ow (function calls etc.) and low-level hardware e�ects (caches
etc.). The contexts relevant for low-level e�ects analysis may be very di�erent from those
relevant for ow analysis, and thus the global e�ects analysis may need to introduce new
contexts.

6Others, like [LMW96, OS97] have also performed data cache analysis, but not as a separate analysis
activity.



6 LOW-LEVEL ANALYSIS 22

For example, in instruction cache analysis, it is natural to distinguish between the �rst
and other iterations of a loop, since the code in the loop is likely to be loaded into the
cache during the �rst iteration and then stay there during the other iterations. For other
e�ects, other distinctions may be relevant. For example, for branch prediction analysis,
the last iteration of a loop is likely to behave di�erently, since the branch prediction is
likely to miss. In theory, a very exact loop analysis could be performed by making every
potential iteration of a loop into a context of its own (which is prohibitively expensive in
terms of storage).

6.2 Local E�ects Analysis

The local e�ects analysis analyzes the instruction timing factors that can be analyzed
locally (using only the neighboring instructions) and generates the timing graph.

6.2.1 Generating the Timing Graph

The input to the local e�ects analysis is the context tree from the global e�ects analysis
and the object code of the program to analyze. The local e�ects analysis generates the
timing graph from this information by traversing the complete context tree, generating
both execution times for basic blocks and the timing graph. The hierarchy of the context
tree is atted into a graph.

6.2.2 Execution Scenarios

The central concept in our local e�ects analysis is the execution scenario. An execution
scenario is a concrete execution of a basic block, with all unknown factors set to the worst
case for the context of the basic block. Examples of potentially unknown factors are cache
hits or misses, branch prediction results, whether branches are taken or not, the memory
addresses or memory areas accessed by loads and stores, and the values of operands.

Each basic block execution scenario corresponds to a node in the timing graph, and
generates one unique execution time.

6.2.3 Node Splitting inside Contexts

In some cases, one basic block may have several execution scenarios in the same context,
for example to express data cache classi�cations like \one miss, seven hits", where it is
hard to de�ne reasonable contexts. In this case, the timing graph nodes are split until a
unique execution scenario is obtained. This split is performed by the local analysis, as a
part of the process of generating the timing graph.

In Figure 14 we show a simple example: a �rst-miss instruction cache classi�cation
(for the �rst instruction in block B) can be handled without de�ning a separate context for
the �rst and other iterations of the surrounding loop7. We split the B node into the two

7We assume that the block B resides inside a loop (otherwise the classi�cation would be meaningless).



6 LOW-LEVEL ANALYSIS 23

Block B after global effects
analysis Block B after expansion to concrete execution scenarios

first miss
hit
hit
hit

B xb
miss
hit
hit
hit

B’ hit
hit
hit
hit

B’’

xbxb’’xb’

xb = xb’ + xb’’
xb’ = 1

Figure 14: The expansion of a block to handle a \�rst miss" cache classi�cation.

nodes B' and B". The sub-node B' represents the case that the �rst instruction misses the
cache, and B" the case when it hits the cache. Without changing the surrounding timing
graph, we add constraints describing how the executions of block B is divided between the
sub-nodes.

The constraint xb0 = 1 represents that a �rst-miss will only generate a single cache
miss. The fact that the two sub-nodes replace the B node in the execution of the program
is expressed by the constraint xb0 + xb00 = xb. All existing constraints on xb can be kept
unchanged.

The node-splitting concept is powerful enough to express the results from a reference
based instruction cache analysis and the results from a data cache analysis.

6.2.4 Determining Execution Times by Simulation

We determine the time for each basic block execution scenario by executing it in a simulator.
The result of the simulation run is an execution time, (tblock), which we store in the timing
graph and use in the �nal execution time calculation.

6.2.5 Analyzing Pipeline Overlap by Simulation

One of the primary problems in low-level analysis for pipelined processors is to determine
the overlap between two successive basic blocks. Traditionally, this has been performed
by determining a pipeline state for both blocks, and then concatenating them (pipeline
concatenation is for example presented by [LBJ+95, OS97]).

In our architecture the pipeline overlap is determined in a step separate from the �nal
calculation of execution times, and the overlap is represented in the timing graph.

This is achieved by using the gain modeling method introduced in [OS97], which as-
sociates execution times not only with the nodes in the graph, but also with the edges

connecting the nodes. The time on an edge is called a gain, and represents the amount
of pipeline overlap between the two nodes (basic blocks) connected by the edge. In some
cases, it might be necessary to consider timing e�ects across more than two blocks. Our
implementation handles these cases, but the details are beyond the scope of this paper.



7 CALCULATION 24

Fragment of
timing graph

Simulator 11 cycles

Simulator

Simulation runs

Simulator

15 cycles

22 cycles

TIming graph
with times

A

B

A

B

BA

A

B

ta=11

tb=15

gab = 4

Figure 15: Analyzing pipeline overlap by simulation.

We obtain the overlap by executing the two basic blocks in sequence, and comparing
the execution time to the total execution time of the two blocks in isolation, as illustrated
in Figure 15. First the blocks A and B are executed in isolation, obtaining the times ta = 11
and tb = 15. Then the sequence hA,Bi is executed, and the time tab = 22 is obtained. Since
this value is smaller than the sum of ta and tb, we conclude that the execution of the blocks
A and B overlaps. The amount of overlap is the gain when executing the edge A!B, and is
calculated as gab = ta + tb � tab. This number is entered into the timing graph and will be
used in the �nal WCET calculation (see Figure 9 on page 11 for an illustration).

7 Calculation

The purpose of the calculator is to calculate the �nal WCET estimate for the program. A
calculation method suitable for our WCET architecture should be:

� Expressive - it should be possible to include the results from many di�erent types of
analysis in the computation.

� Extendable - future analysis results and new hardware features should easily be
integrated.

� Retargetable - it should be target-hardware and high-level language independent.

� EÆcient - the calculation should terminate within a reasonable time.

� Safe and tight - the calculation should not add any pessimism of its own, and it
should not cause the �nal timing estimate to become unsafe.

To speed the analysis it is advantageous if we can express and exploit the characteristics
of the problem domain. Furthermore, we like to use a well established methodology for
performing calculations, since this makes it easier to �nd good calculation modules.

When considering the analysis of hand-written assembly language and optimized high-
level code, it is necessary that the calculation can handle unstructured ow graphs. The
need for this is demonstrated by [Eng99].



7 CALCULATION 25

7.1 Separation vs. Integration

A number of di�erent calculation methods have been proposed in the literature. In some,
the calculation of the �nal WCET is integrated with the low-level analysis. For example,
both the global and local e�ects analyses are integrated with the WCET calculation in
[LBJ+95, LMW96, OS97]. Another example is [LS98] where both the analysis of program
ow and low-level e�ects analysis are integrated with the WCET calculation.

We believe that for a WCET tool to be able to integrate new analyses and methods,
the WCET calculation should be separate from the analyses. Trying to integrate several
di�erent analyses in the calculation is likely to cause an explosion in complexity.

Calc Method Analyses Performed
Path Tree IPET Flow Global Local

Florida
p � � �

Gothenburg
p � � �

Paderborn
p � � �

York
p � � �

Seoul
p � � �

Viennaold
p � � �

Viennanew
p � � �

Princeton
p � � �

Saarbr�ucken
p � � �

Uppsalaold
p � � �

Uppsalanew
p � � �

� Result of separate analysis used in WCET calculation
� Analysis integrated in WCET calculation
� No analysis performed

The research groups:

Florida: Florida State University, Tallahassee, USA. [HAM+99, WMH+97, Mue97a]
Gothenburg: Chalmers University of Technology, Gothenburg, Sweden. [LS98]
Paderborn: C-LAB, Paderborn, Germany. [Alt96, SA97]
York: University of York, York, Great Britain. [CBW94, Cha95]
Vienna: Technical University of Vienna, Vienna, Austria. [Vrc94, PS95]
Seoul: Seoul National University, Seoul, Korea. [LBJ+95, LKM98]
Princeton: Princeton University, Princeton, USA. [LM95, LMW96]
Saarbr�ucken: Universit�at des Saarlandes, Saarbr�ucken, Germany. [TF98, FMW97]
Uppsala: Uppsala University, Uppsala, Sweden. [OS97, EAE98]

Table 2: Overview of calculation methods

7.2 Calculation Methods

We can (roughly) divide the calculation methods proposed in the literature into three
categories: path-, tree-, or IPET8-based.

8Implicit Path Enumeration Technique



7 CALCULATION 26

The path-based category includes calculation methods that generate the �nal WCET
estimate by calculating times for di�erent paths in a program, searching for the path with
the longest execution time. The de�ning feature is that possible execution paths are explicit
represented.

In tree-based methods the �nal WCET is generated by a bottom-up traversal of a tree
representing the program. The analysis results for smaller parts of the program is used to
build up timing estimates for larger parts of the program.

Methods in the IPET-based category express the dynamic program ow and the hard-
ware timing e�ects using constraints. The �nal WCET estimate is calculated by max-
imizing a goal function that ties the constraints together. The maximization is usually
performed using either constraint satisfaction methods (CSP) or integer linear program-
ming (ILP). The di�erence from the path-based methods is that possible program paths are
handled implicitly. Only the fact that a certain basic block is executed a certain number
of times is expressed, not the exact paths causing that basic block to be executed.

We summarize the calculation methods used by various WCET research groups in
Table 2. We have named the research groups according to the city (or state) where they
are located.

We distinguish between the early work (Viennaold) of the research group in Vienna
where a tree-based calculation was used [Vrc94] and their later work (Viennanew) where an
IPET-based calculation method is used [PS95]. We also distinguish between our previous
approach to WCET calculation (Uppsalaold) [OS97] and our current approach (Uppsalanew)
as described in this paper.

7.3 The Implicit Path Enumeration Technique

We have chosen IPET as our calculation method since it is the method that best satis�es
our requirements. We believe that path- and tree-based methods are harder to retarget
and have more problems in integrating results from di�erent program ow and low-level
analyses compared to IPET-based methods.

For example, tree-based methods have problems in expressing ow constraints that
reach over a larger part of the program, and cannot handle unstructured ow graphs.
Path-based methods su�er problems for programs with large number of possible paths,
since each path has to be explicitly considered. Furthermore, integrating the results of
new analyses usually requires changing the implementation of the calculation module.

The IPET calculation is easy to extend to handle new analysis methods. The results
of new analyses are expressed either as constraints on the ow (for ow analysis methods),
details in execution scenarios (for global e�ects analyses), or execution times in the timing
graph (for local e�ects analyses). The calculation method does not need to change at all,
thanks to the careful separation of calculation and analysis, and the expressive power of
the IPET formulation.

Another advantage of the IPET method is that it produces a pro�le of the worst-
case execution of the program. The solution to the maximization problem is a set of
concrete values for the execution count variables, which shows how many times various



8 FUTURE WORK 27

basic blocks and edges are executed in the worst-case execution. This could be used to
guide optimizations to reduce the worst-case execution.

The quality of the �nal WCET estimate depends on the quality of the analysis methods
employed. We believe that if we include the same information in the IPET formulation as
used by other calculation methods, the result should be of at least the same quality.

The possible drawback of the IPET method is that, since the problem has been ab-
stracted, it is rather hard to develop algorithm heuristics that use knowledge of the problem
domain.

There are two dominant solution methods used for IPET:

� Integer Linear Programming (ILP) as in [LM95, PS95, TF98].

� Constraint Satisfaction (CSP) [Tsa93] as in [OS97].

The bene�ts of using ILP is that it is very eÆcient (several good commercial solvers
exist [CO99]) as long as linear constraints can be used to express the results of our analyses.
The bene�ts of using CSP is that we can express more complex (non-linear) constraints
and that we can specify search heuristics. By adding redundant constraints to the CSP
problem we can also make the solution process more eÆcient.

8 Future Work

Our long term goal is to produce a usable WCET tool, available as shrink-wrapped software
on the real-time market. To this end, we cooperate with IAR Systems (Uppsala, Sweden),
a vendor of embedded system programming tools. We hope to be able to integrate WCET
analysis into their integrated development environment. We believe that this integration
with accepted tools is the best way to get WCET analysis accepted on the market, and to
make practioners in the real-time �eld actually use execution-time analysis.

In our continued work, we plan to to address the issues described in the following
sections.

8.1 Component-Based WCET Analysis

In the architecture sketch in Figure 2 on page 4, libraries are listed among the program
sources. The main problem with libraries is that they are usually delivered as object
code, thus prohibiting source-code ow analysis. To integrate the libraries into our WCET
analysis framework, we need to provide context subtrees containing ow information for
the library calls.

One way to handle this is by ow analysis on the object code of the library. However,
since object-code analysis is expected to give less information than analysis on the source-
code level, this is not a preferable approach.

An alternative approach would be to integrate analysis of library components in the
compilation of the library. That is, we want to be able to analyze program components,
and then use the results as components in the �nal analysis of the complete application.



8 FUTURE WORK 28

This would have several bene�ts:

� A library vendor could provide information about their components to allow tight
execution time estimates, without compromising their source code.

� Stable parts of the application could be converted into components, which would
reduce the amount of work required for future WCET analyses of the application.

Finding a good model for component-based WCET analysis is one of our main future
research goals.

8.2 Partial Program Analysis

Traditionally, WCET analysis is performed on the completed, compiled and linked pro-
gram. However, the entire program may not be available for analysis. Engineers would
like to be able to check small parts of a program before the program can be linked in its
entirety. Maybe parts of the development is performed by sub-contractors, whose code is
going to be linked in quite late. In those cases, support for partial program WCET analysis

is needed.
Note that partial program analysis and component-based WCET analysis have much

in common, but that they address two di�erent problems: partial program analysis allows
an incomplete program to be analyzed, while component-based analysis allows complete
components to be eÆciently reused. Given component-based WCET analysis, it should be
quite easy to implement partial program analysis.

A problem with WCET analysis is that it is essentially about properties of complete
programs or closed pieces of programs. A piece of code calling an unknown piece of code
really cannot be timed.

A reasonable solution is to allow the user to specify timing information for the fragments
of a program which are not available. Such abstractions should be speci�ed on the level
of functions (and include information about all the functions called from the function).
Function timing-abstractions have the following desirable e�ects:

� We can analyze a program and get approximate results even if the entire program
is not available. In the case that a system designer has provided a time budget for
certain software components, these budgets can be used to represent the execution
time of the components until the components are complete. This allows the designer
to time an incomplete program.

� It allows timing estimates to be made at an early stage in the development process.

8.3 Support for new Hardware Features

One important objective of WCET analysis research is to extend the set of hardware
features that can be analyzed. A few years back, caches were considered intractable for



9 CONCLUSIONS 29

WCET analysis. Today we have analysis methods applicable to most common types of
caches and single-pipeline processor cores. However, due to the rapid development in
computer architecture, there is no end to complex hardware features that require tight
modeling (or at least safe approximations).

8.4 Feedback into the Compiler

An intriguing idea is to use the results of the worst-case execution time analysis to guide
the code generation in the compiler.

In [HSRW98], some synergy e�ects between the high-level analysis of loops and the
compiler are shown. The detailed analysis of loops makes it possible to �nd redundant
loop exit conditions (which can thus be removed as dead code). Furthermore, knowledge
about the minimum number of loop iterations could help an optimizer make better decisions
on how to optimize loops.

The analysis of the cache behavior of a program could be used to optimize the program
for better cache behavior: either to make it more predictable, or to make it faster, depend-
ing on preference. In general, using the results of hardware analysis to obtain programs
with more predictable timing behavior is a little-explored area which we believe should
prove fruitful.

Another possibility is to use the identi�cation of worst-case paths inherent in WCET
analysis to optimize the speed of the worst-case execution. Today, compiler research focuses
on speeding up the average case. However, for real-time systems, speeding up the worst
case would be more appropriate, since systems are dimensioned for the worst case, and not
for the average case.

8.5 Short Analysis Time or Accurate Result?

Early in a real-time development project, WCET analysis may be performed with the goal
of obtaining approximate timing measures in order to make time-budgets or to estimate the
level of CPU performance necessary. It is obvious that a very exact analysis is not needed
at this stage, and that a general WCET tool should support \quick and dirty" analysis,
where the goal is to quickly generate a WCET estimate, with no particular requirements
on safety and tightness.

Thus, extensive analysis may not be needed until quite late in the development process,
and the WCET tool should allow the programmer to choose the level of accuracy of the
analysis. The �nal WCET estimate used to analyze and prove the shipping system must
be safe and as tight as possible, of course.

9 Conclusions

In this article we have presented an architectural framework for Worst-Case Execution
Time (WCET) analysis tools, which provides a exible framework into which state of



9 CONCLUSIONS 30

the art WCET analysis techniques can be integrated. The architecture identi�es the dif-
ferent subproblems associated with WCET analysis, and by providing well-de�ned data
structures for the interfaces between the architectural components we allow modular up-
grades/modi�cations of WCET tools built upon the architecture.

The main motivation for our work is that WCET analysis today is powerful enough to
be exploited in industrial settings. However, WCET researchers have focused on smaller
subproblems of WCET analysis, not considering the architectural issues of constructing a
complete, industry strength, WCET tool.

Our architectural design decisions have been made to enable realization of the archi-
tecture in an industrial context. We believe that WCET analysis will be accepted by
real-time practitioners only if it can be provided in the standard tool chest of an integrated
development environment. WCET analysis should be a part of the everyday edit-compile-
test-debug cycle.

Furthermore, we have to take the versatility of hardware being used for real-time sys-
tems into account. Many real-time systems are mass produced embedded systems, with
extreme requirements on low hardware costs. Thus, real-time practitioners often target
simple 8-bit architectures with very limited memory capacity.

However, we cannot limit a WCET tool to small CPUs but must also be able to support
everything from the simplest hardware platforms up to full sized 32-bit RISC systems (i.e.,
systems with pipelines, multi-level caches, multi-issue, and other hardware features which
substantially complicates the WCET analysis).

We have presented an overview of the state of the art in WCET analysis and shown
how these techniques can be integrated into our framework. The ability to integrate results
from many sources is important from at least two aspects: the practical aspect, that reusing
work from other researches make a lot of sense (why reinvent the wheel?), and from the
more academic perspective, that a framework into which many di�erent methods can be
joined makes it possible to make qualitative evaluations of di�erent methods for solving a
particular subproblem of WCET analysis (e.g., we could plug in two di�erent cache analysis
techniques and compare their e�ects on the �nal WCET estimate).

Acknowledgements

This work has been supported by ASTEC (Advanced Software Technology Center (www.-
docs.uu.se/astec)), NUTEK (Swedish National Board for Industrial and Technical De-
velopment), TFR (Swedish Research Council for Energineering Sciences), and IAR Systems
(www.iar.com).

We thank Tobias Amnell9 and Jukka M�aki-Turja10 for their comments on drafts of this
article.

And by the way, the WCET estimate of the example program is 2040 clockcycles11.

9Department of Computer Systems, Uppsala University
10M�alardalen Real-Time Research Center
11Calculated using Sicstus Prolog [Int95] Finite Domain Constraint Solver [COC97].



REFERENCES 31

References

[ABD+95] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings. Fixed Pri-
ority Pre-Emptive Scheduling: An Historical Perspective. Real-Time Systems,
8(2/3):129{154, 1995.

[Alt96] Peter Altenbernd. On the false path problem in hard real-time programs. In Proc.
of the 8th Euromicro Workshop of Real-Time Systems, 1996.

[BCD+92] David S. Blickstein, Peter W. Craig, Caroline S. Davidson, R. Neil Faiman, Kent D.
Glossop, Richard B. Grove, Steven O. Hobbs, and William B. Noyce. The gem
optimizing compiler system. Digital Technical Journal, 4(4), 1992.

[BMSO+96] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings. Adding In-
struction Cache E�ects to Schedulability Analysis of Preemptive Real-Time Systems.
In Proc. 2nd IEEE Real-Time Technology and Applications Symposium (RTAS'96),
pages 204{212. IEEE Computer Society Press, June 1996.

[CBW94] Roderick Chapman, Alan Burns, and Andy Wellings. Integrated program proof and
worst-case timing analysis of SPARK Ada. In Proc. ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time Systems (LCT-RTS'94), 1994.

[Cha94] Roderick Chapman. Program timing analysis. Dependable Computing System Cen-
tre, University of York, England, May 1994.

[Cha95] R. Chapman. Static Timing Analysis and Program Proof. PhD thesis, Department
of Computer Science, University of York, England, 1995.

[CO99] Mats Carlsson and Greger Ottosson. A comparison of cp, ip and hybrids for con�g-
uration problems. Technical Report T99-04, Swedish Institute of Computer Science,
1999.

[COC97] Mats Carlsson, Greger Ottosson, and Bj�orn Carlson. An open-ended �nite domain
constraint solver. In Proc. 9th International Symposium on Programming Languages,
Implementations, Logics, and Programs, pages 191{206, 1997.

[CRTM98] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano { a revolution in
on-board communications. Volvo Technology Report, 1:9{19, 1998.

[EAE98] Jakob Engblom, Peter Altenbernd, and Andreas Ermedahl. Facilitating worst-case
execution times analysis for optimized code. In Proc. of the 10th Euromicro Work-
shop of Real-Time Systems, pages 146{153, June 1998.

[EG97] Andreas Ermedahl and Jan Gustafsson. Deriving annotations for tight calculation of
execution time. In Proceedings of Euro-Par 97, Lecture Notes in Computer Science
(LNCS) 1300, pages 1298{1307. Springer Verlag, August 1997.

[Eng99] Jakob Engblom. Static properties of embedded real-time programs, and their im-
plications for worst-case execution time analysis. In Proc. 5th IEEE Real-Time
Technology and Applications Symposium (RTAS'99). IEEE Computer Society Press,
June 1999. To be published.



REFERENCES 32

[FMW97] Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Applying compiler
techniques to cache behavior prediction. In Proc. ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time Systems (LCT-RTS'97), 1997.

[GE98] J. Gustafsson and A. Ermedahl. Automatic derivation of path and loop annotations
in object-oriented real-time programs. Journal of Parallel and Distributed Comput-
ing Practices, 1998.

[HAM+99] Christopher A. Healy, Robert D. Arnold, Frank Mueller, David B. Whalley, and
Marion G. Harmon. Bounding pipeline and instruction cache performance. IEEE
Transactions on Computers, 48(1), January 1999.

[HP96] John L Hennessy and David A Patterson. Computer Architecture A Quantitative
Approach. Morgan Kaufmann Publishers Inc., 2nd edition, 1996. ISBN 1-55860-329-
8.

[HSRW98] C. Healy, M. Sj�odin, V. Rustagi, and D. Whalley. Bounding loop iterations for timing
analysis. In Proc. 4th IEEE Real-Time Technology and Applications Symposium
(RTAS'98), June 1998. URL: http://www.docs.uu.se/~mic/papers.html.

[HW99] C. Healy and D. Whalley. Tighter Timing Predictions by Automatic Detection
and Exploitation of Value-Dependent Constraints. In Proc. 5th IEEE Real-Time
Technology and Applications Symposium (RTAS'99), June 1999. To be published.

[Int94] Intel. MCS 51 Microcontroller Family User's Manual, 1994. Document no. 272383-
002.

[Int95] Intelligent Systems Laboratory. SICStus Prolog user's manual. ISBN 91-630-3648-7,
Swedish Institute of Computer Science, 1995.

[Jon99] Nigel Jones. EÆcient c code for eight-bit mcus. Embedded Systems Programming
Europe, pages 18{30, February 1999.

[LBJ+95] S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin,
K. Park, and C. S. Ki. An accurate worst-case timing analysis for risc proces-
sors. IEEE Transactions on Software Engineering, 21(7):593{604, July 1995. URL:
http://archi.snu.ac.kr/symin/ets.ps.

[LHS+96] C. Lee, J. Han, Y. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee, and C. Kim. Anal-
ysis of Cache-Related Preemption Delay in Fixed-Priority Preemptive Scheduling.
In Proc. 17th IEEE Real-Time Systems Symposium (RTSS'96), December 1996.

[LKM98] Sung-Soo Lim, Jihong Kim, and Sang Lyul Min. A worst case timing analysis tech-
nique for optimized programs. In Proceedings of the �fth International Conference
on Real-Time Computing Systems and Applications (RTCSA); Hiroshima, Japan,
pages 151{157, Oct 1998.

[LL73] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM, 20(1):46{61, 1973.



REFERENCES 33

[LM95] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software
using implicit path enumeration. In Proceedings of the 32:nd Design Automation
Conference, pages 456{461, 1995.

[LMW96] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Cache modelling for real-
time software: Beyond direct mapped instruction caches. In Proc. 17th IEEE
Real-Time Systems Symposium (RTSS'96), pages 254{263. IEEE Computer Soci-
ety Press, December 1996.

[LS98] T. Lundqvist and P. Stenstr�om. Integrating Path and Timing Analysis using
Instruction-Level Simulation Techniques. In Proc. SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Embedded Systems (LCTES'98), June 1998.

[Muc97] Steven S. Muchnick. Advanced Compiler Design. Morgan Kaufmann Publishers,
1997.

[Mue97a] Frank Mueller. Generalizing timing predictions to set-associative caches. In Proc. of
the 9th Euromicro Workshop of Real-Time Systems, pages 64{71, Jun 1997. URL:
http://www.cs.fsu.edu/~mueller/publications.html.

[Mue97b] Frank Mueller. Timing predictions for multi-level caches. In Proc.
ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Real-Time Systems (LCT-RTS'97), pages 29{36, Jun 1997. URL:
http://www.cs.fsu.edu/~mueller/publications.html.

[NEC95] NEC. V850 Family 32/16-bit Single Chip Microcontroller User's Manual: Architec-
ture, 4th edition, 1995. Document no. U10243EJ4V0UM00.

[OS97] Greger Ottosson and Mikael Sj�odin. Worst-Case Execution Time Analysis for Mod-
ern Hardware Architectures. In Proc. ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems (LCT-RTS'97), June 1997.

[PK89] Peter Puschner and Ch. Koza. Calculating the maximum execution time of real-time
programs. The Journal of Real-Time Systems, 1(1):159{176, 1989.

[PS90] Chang Yun Park and Alan C. Shaw. Experiments with a program timing tool based
on a source-level timing schema. In Proc. 11th IEEE Real-Time Systems Symposium
(RTSS'90), pages 72{81, December 1990.

[PS93] Peter Puschner and Anton Schedl. A tool for the computation of worst case task
execution times. In Proc. of the 5th Euromicro Workshop of Real-Time Systems,
1993.

[PS95] Peter Puschner and Anton Schedl. Computing maximum task execution times with
linear programming techniques. Technical report, Technische Universit�at, Institut
f�ur Technische Informatik, Wien, April 1995.

[SA97] Friedhelm Stappert and Peter Altenbernd. Complete worst-case execution time
analysis of straight-line hard real-time programs. Technical Report External Report
27-97, C-LAB, Paderborn, 1997.



REFERENCES 34

[SKO+96] Veikko Sepp�anen, Anna-Maria K�ahk�onen, Markku Oivo, Harri Perunka, Pekka Iso-
mursu, and Petri Pulli. Strategic needs and future trends of embedded software.
Technical Report Technology Review 48/96, TEKES Technology Development Cen-
ter, Oulu, Finland, October 1996.

[SSNB95] J.A. Stankovic, M. Spuri, M. Di Natale, and G.C. Buttazzo. Implications of Classical
Scheduling Results for Real-Time Systems. IEEE Computer, pages 16{25, June 1995.

[TF98] Henrik Theiling and Christian Ferdinand. Combining abstract interpretation and
ilp for microarchitecture modelling and program path analysis. In Proc. 19th IEEE
Real-Time Systems Symposium (RTSS'98), December 1998.

[Tsa93] E. Tsang. Foundations of Constraint Satisfaction. Academic
Press, 1993. Out of print, but available from the author; see
http://cswww.essex.ac.uk/CSP/edward/FCS.html.

[Vrc94] Alexander Vrchoticky. The Basis for Static Execution Time Prediction. PhD thesis,
Institut f�ur Technische Informatik, Technische Universitt Wien, Treitlstrae 3/182.1,
A-1040 Wien, Austria, April 1994.

[Whi97] Randall T. White. Bounding Worst-Case Data Cache Performance. PhD the-
sis, Florida State University, 1997. URL: http://www.cs.fsu.edu/~whalley/-
papers/white diss97.ps.

[WMH+97] R. White, F. M�uller, C. Healy, D. Whalley, and M. Harmon. Timing analysis for
data caches and set-associative caches. In Proc. 3rd IEEE Real-Time Technology
and Applications Symposium (RTAS'97), pages 192{202, June 1997.

[ZiL95] ZiLOG. Z80 Microprocessor Family User's Manual. ZiLOG, January 1995.


