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Abstract

In the telecom industry the software requirements often include the
need to upgrade the system at run-time, and at the same time the devel-
opment has to be quick in order to keep the time to market short.

Erlang/OTP addresses many of the problems inherent in software
for the telecom industry. The Erlang systems of today are slow, even
though they are "fast enough" for most applications.

Still there are some time critical applications that could take advantage
of a faster Erlang implementation. At the High Performance Erlang
(HiPE) group at Uppsala University we work with the execution behavior
of Erlang. We intend to �nd out how to design a compiler for large,
industrial, functional programs.

In this report we will describe and compare three run-time systems
for Erlang: JAM, BEAM, and HiPE. We will describe some hardware

aspects of a modern RISC processor: the UltraSparcTM. We will also
describe some techniques for performance measuring: both some hardware
speci�c and some Erlang speci�c techniques.

These techniques will then be used to thoroughly examine three Er-
lang programs: parts of two large telecom applications and one small
sequential benchmark. From the collected data we can examine the ef-
fects of the cached memory hierarchy, prediction, and pipelining on the
three run-time systems.

We will show that our system (HiPE) is 1.6 times faster than the
emulated byte code system JAM, provided by Ericsson, on a large time
critical industrial benchmark, even though 32 percent of the time is spent
in built-in functions, which currently is outside our control.

We will also show that even though large programs, when they are
compiled to native machine code, have trouble with the instruction cache
this problem is not larger than the pipeline problems emulated code has,
such as misprediction stalls.
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1 Introduction

Telephone switches have to be very reliable (the down times are measured in

minutes per year, and the uptime should be at least 99.998%), therefore there

are high demands on the software. In the telecom industry the competition is

hard and the technological evolution is fast. This leads to the need to quickly

develop robust applications that easily can be maintained and extended.

The concurrent functional programming languageErlang is designed by Er-

icsson with the needs of the telecom industry in mind. Erlang addresses these

needs with a run-time system that provides many features often associated with

an operating system, such as scheduling of concurrent processes, memory man-

agement and networking. With the Open Telecom Platform (OTP) Erlang is

further extended with a library of standard solutions (servers, state machines,

process monitors, load balancing), standard interfaces (CORBA), and standard

communication protocols (http, ftp). The Erlang implementations of today

are slow, but since Erlang addresses the problems in the telecom industry it

has been very successful.

We, the HiPE group, intend to develop a high performance Erlang imple-

mentation that compiles Erlang to native code. We have begun this work

by implementing a simple Erlang to SPARC compiler. This allows us to do

precise measurements on real Erlang programs in order to �nd bottlenecks to

concentrate our e�orts on. Typical telecom applications are large and have inner

loops that are too large to �t in the instruction cache. They also involve pro-

cess communication and process scheduling. It is not obvious that traditional

optimization techniques will be e�ective on these applications.

One aspect we wanted to investigate was whether native code would have

serious problems with the instruction cache on large programs.

In this paper we will present our �ndings when examining two time critical

telecom applications, namely parts of Ericsson's AXD 301 ATM switch, and the

web server Eddie.

We have run these benchmarks in three Erlang run-time systems that have

much in common, such as the same garbage collector and built-in functions.Still

they di�er in some important aspects, two of the systems uses di�erent types

of abstract machines and one system compiles to native code. This makes it

possible for us to compare these designs to each other.

We have done our comparison by measuring the low level aspects of the

execution behavior, such as the time the CPU spends stalling because of di�erent

types of cache misses.
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When we compared emulated and native code we found that the total

amount of pipeline stalls is larger for the emulated code than for the native

code, even when the native compiled code is so large that the inner loop does

not �t in the instruction cache. We suspect that three factors are responsible for

this: The emulated code has to use the same data cache as the application data.

The stack-based emulator uses more load and store instructions than a register

implementation. The branching behavior of the general byte code emulator is

harder for the hardware to predict than that of specialized native code.

We also found that a large portion of the execution time of this application

is spent in built-in functions.

The paper begins with a brief presentation of Erlang (Section 2)1.

Then we will describe three di�erentErlang run-time systems JAM, BEAM,

and HiPE (Section 3). We will then describe the experimental setup that we

have used (Section 4).

After that we will show an encouraging result on a small toy benchmark

(Section 5) and on a part of the web server Eddie (Section 6). Then we will

present the AXD 301 benchmark in some detail with results (Section 7). Finally

we will present some ideas about future work (Section 8) and our conclusions

(Section 9).

1If you are interested in a more complete description of the language please look at the

free Erlang site www.erlang.org, Ericsson's commercial Erlang site www.erlang.se or read

Concurrent Programming in Erlang [2].
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2 Erlang

Erlang is a concurrent functional programming language. The run-time sys-

tem of an Erlang implementation has many features more commonly associ-

ated with operating systems: concurrent processes, scheduling, memory man-

agement, distribution, networking, etc.

2.1 Basic properties of Erlang

There are no destructive updates in Erlang. In the example (Example 1), the

variables Rest, AccLen, and Length are immutable as all Erlang variables.

Example 1 (Two simple functions in Erlang)

% Comments are preceded by a percent sign...
% ...and run to the end of the line.

% The function len/1 calculates the length of a list.
len(List) ->
len(List, 0). % By calling len/2 with the list and zero.

% The function len/2 calculates the length of a list.
len([ |Rest], AccLen) ->
len(Rest, AccLen+1);

len([],Length) ->
Length.

Erlang has no iteration constructs, but loops can be constructed by recur-

sion. Preferably by tail-recursion: if the last instruction in a function is a call

then that call is a tail-call. Before a tail call the current stack frame can be

freed, making it possible to execute loops in constant stack space, this is called

tail call optimization or last call optimization. In the example the recursive call

to the function len/2 is tail-recursive.

Erlang is dynamically typed and there is no explicit way for the program-

mer to specify new datatypes2. But there are implicit ways to construct com-

plex data structures from the datatypes present in the language. The simplest

datatype in Erlang is the atom, two atoms are identical if and only if they

have the same name. There are three di�erent types of numbers in Erlang:

�xnums, oats, and arbitrary precision numbers (bignums). Erlang has some

other simple datatypes, such as process identi�ers (PIDs), references, and ports.

There is also a special datatype, called a binary, for (large) sequences of bits,

2
Erlang does have a de�nable data structured called a record, but records can be converted

to tuples by a preprocessor step.
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which is often used for incoming and outgoing communication. The implemen-

tation of binaries has to be both time- and space-e�cient since large binaries

often are used in Erlang programs that deal with for example protocol stacks.

Erlang o�ers two ways to build complex data structures. All Erlang

datatypes can be combined into polymorphic lists or tuples. A list is either

empty ([]), called nil, or a cons of some datatype and a list ([Any|List]). A

tuple of arity N is a vector of N elements with constant access time for each

element (fE1; E2; E3; : : : ; ENg). In the example there are two constants: the

empty list [] and the �xnum 1.

Erlang supports pattern matching, where patterns of datatype constructors

can be used to distinguish between di�erent cases. An unbound variable in a

pattern matches any term at that position of the term being matched. When a

match is successful the variables in the pattern are bound to the corresponding

terms. The universal pattern '_' matches any Erlang term.

In the example the function heads in the two clauses of len/2 have distinct

patterns. The pattern '[_|Rest]' matches all lists with at least one element.

When a match is successful the rest of the list (all but the �rst element) is bound

to the variable 'Rest'. The pattern '[]' only matches the empty list.

2.2 Modules

A module in Erlang is a collection of functions sharing the same name space.

Functions in one module are accessible to functions in other modules only if

they are explicitly exported from the module de�ning them. Within the module

however all functions are visible. Example 2 shows a complete Erlang module.

A call to a function in another module is called a remote call. The compiler

does not need to check that functions in other modules exist. But if the desti-

nation of a remote call does not exist when called at run-time, a run-time error

is generated.

Example 2 (A module in Erlang)

-module(length).
-export([length/1]).

% Calculates the length of the list List.
length(List) ->
len(List, 0).

% Tail-recursive implementation that uses an
% accumulated parameter to calculate the length of a list
len([ |Rest], AccLen) ->
len(Rest, AccLen+1);
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len([], Length) ->
Length.

A unique feature of Erlang is its ability to change code in a running pro-

gram, called hot-code loading. Old code can be phased out and replaced by new

code on module at the time. During the transition, both old code and new code

can coexist. When new code for a module is loaded each remote function call

to that module will be to the new code. It is thus possible to install bug �xes

and upgrades in a running system without disturbing its operation.

This means that there have to be mechanisms in the run-time system to

facilitate code replacement. One way to do this is by using a dynamic lookup for

each remote call. Another approach is to let the call include the real address of

the destination and then patch each remote call site with the address of the new

code. These mechanisms can both incur run-time costs and make optimizations,

such as inlining, harder.

2.3 Concurrency

Concurrency, which is central to Erlang, is achieved by independent Erlang

processes. Conceptually, processes have no shared memory, instead they com-

municate by asynchronousmessage passing. Example 3 shows how a new process

is created and how a message is sent to that process.

Example 3 (Process communication in Erlang)

-module(process comm).
-export([a process/0, start/0]).

start() ->
A PID = spawn(process comm, a process,[]),
A PID ! {ping, self()}, % send a message.
receive % Wait for a message...
pong -> true; % We hope to get a pong back.
-> false

end.

a process() ->
receive
{ping, B PID} ->

B PID ! pong; % Receive a ping and respond
->

throw(unknown message) % We don't expect this message
after 10000 ->

throw({time out}) % If we don't get any message...
end.

The primitive spawn/3 creates a new process and returns the process identi-

�er (PID) of the new process. The two �rst arguments to spawn are atoms
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representing the module name and function name of the function that the new

process should execute. The third argument is a list whose elements are passed

as arguments to the function, the length of the list gives the arity of the func-

tion. Only exported functions can be given as argument to a spawn, that is why

a process/0 is exported in the example.

A message can be sent to a process using the in�x send primitive !/2, as in

the example, where a tuple is sent to the new process with:

A_PID ! {ping, self()}

When a message is sent it is placed last in the orderedmailbox of the receiving

process.

The built-in function self/0 returns the process identi�er of the current

process.

Pattern matching can be used to distinguish between incoming messages in

the receive primitive. In the simplest form the pattern is just a free variable

as in:

receive Message -> Message end

This expression will check the mailbox for any messages and return the �rst

message in the mailbox. If the mailbox is empty the process will be suspended

until it receives a message. (In the general case the process will be suspended

if there is no message in the message queue that matches the patterns.) If the

suspended process receives a new message it checks if the message matches any

of the patterns; if it does, the process starts running again with a new time-slice,

otherwise it will keep waiting.

If a process receives messages that do not match any pattern the mailbox

might grow, therefore it is customary to include a catch-all with the universal

pattern ' ' as in Example 3 to get rid of unwanted messages.

The receive checks the �rst message in the mailbox against all patterns. If

no pattern matches then it checks the next message against all patterns, and so

on, until all messages are tested.

When writing robust network applications one would often like to take some

special action if an expected message does not arrive on time. This can be done

by setting up a timeout in the receive by using the construct after TIME ->,

as in the example (Example 3) where a timeout of 10,000 milliseconds is set.

If a suspended process has set a timeout it will be rescheduled when the

given time has expired, and execution will continue in the body of the after

clause.
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From the programmer's point of view, the same message passing mechanism

that is used between Erlang processes is also used between Erlang processes

and the outside world. This mechanism is used for communication with the host

operating system and for interaction with programs written in other languages.

2.4 Exceptions

Error recovery is an important part of Erlang and all run-time errors are

trapable by means of a catch. A catch works like a handle in ML and all

exceptions generated in a \catched" expression will cause the program control to

be transferred to the catch. The programmer can also de�ne his own exceptions

and generate them by means of a throw.

2.5 Meta call

Erlang provides the ability to do a meta call with the built-in function apply/3.

The function apply takes the name of a module and a function and a list of

arguments just as spawn, but it does not create a new process; instead it calls

the given function and returns the value of the application.

Only exported functions in a module can be called with apply, even if the

call is done from inside the same module as the called function.

2.6 Memory management

There is no explicit memory management in Erlang, instead the Erlang run-

time system is responsible for deallocating unused data. This can be done by

Garbage Collection.

2.7 Distributed Erlang

Erlang can be run in two di�erent ways, either locally or distributed. If

Erlang is run distributed then each instance of the Erlang run-time system

is called a node.

Several Erlang nodes can be connected to each other and messages can be

sent between processes on di�erent Erlang nodes in the same way as between

processes in a local Erlang system.
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2.8 Built-in functions and libraries

The power of Erlang is further enhanced by a number of powerful built-in

functions (BIFs) and an extensive standard library3.

One important set of built-in functions is the set of database functions.

These databases are local to an Erlang node and are used by the ETS (Erlang

Term Storage) standard library to implement a general database. The ETS

module is more or less just an interface to the built-in functions but they make

it possible to use databases across Erlang nodes in a transparent manner.

These databases, called ETS-tables, can either be private to a process or public

to all processes that have access to the unique reference to the table. The data

in the databases are tuples where the �rst element in the tuple is the key.

3A speci�c telecom library provided by OTP is also available for Erlang. Information

about OTP (and Erlang) can be found at http://www.erlang.se
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3 Three Erlang run-time systems

We have looked at three di�erent Erlang implementations: JAM, BEAM, and

HiPE4. JAM and BEAM are two abstract machines with emulators implemented

in C. HiPE is a native code implementation for SPARC. All three systems have

their own compiler. In this section we will describe some aspects of these im-

plementations and the similarities and di�erences between these systems.

These three run-time systems are very similar in some aspects. They use

the same standard libraries, they have the same scheduler, the same garbage

collector and the same implementation of built-in functions. JAM and HiPE

also has the same front end, pattern matcher and the same taging scheme. This

makes it possible to compare how the things that makes them di�erent a�ects

performance. That is, the back ends and the emulators.

3.1 Common framework

All three run-time systems are based on the same run-time "kernel"; they have

the same built-in functions, the same garbage collector and the same scheduling

mechanism. Here we will describe how these systems handle processes and

scheduling.

3.1.1 Processes

From the view of the operating system, the Erlang run-time system is merely

an application with processes represented using ordinary data structures. An

Erlang process consists of a process control block (PCB), a mailbox, a stack

and a heap.

An Erlang process is extremely lightweight and these run-time systems

supports applications with very large numbers of concurrent processes [7].

Since each process has its own heap, message passing is implemented by

copying the message from the heap of the sending process to the heap of the

receiving process. After the message is written, a pointer to the message is

inserted into the message queue of the receiving process.

The databases, used for example by ETS, are placed outside the processes,

as shown in Figure 1. This means that data has to be copied to and from the

process heap and the database when a process performs a database access.

4We will use the names JAM, BEAM, and HiPE to refer both to the run-time system and

the compiler. We might also say that a benchmark was run on JAM when we really mean

that it was run as emulated JAM code in the HiPE run-time system, since the JAM emulator

is (almost) the same in HiPE as in JAM.
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Figure 1: Erlang processes and other data structures in the run-time system.

Binaries are also stored outside the processes, but in this case data would

have had to be copied by for example the built-in function list to binary/1

anyway. Since each process has its own heap this implementation technique can

save space when many processes have access to the same huge binary.

3.1.2 Scheduling

The process table is a data structure responsible for keeping track of all processes;

this is done by linking the PCBs as shown in Figure 1. Besides keeping track

of the process that is currently executing, the process table contains a ready

queue with processes awaiting execution, and a queue of processes waiting for

a message or a timeout.

The top-level loop of the run-time system does two things: it checks for I/O

(on sockets and �le handles) and then it runs the scheduler. The top-level is

represented by the oval in the upper left corner of Figure 2.

When the scheduler starts, it checks if a timeout has occurred for any pro-

cesses; in that case those processes are placed in the ready queue.

The scheduler then selects the �rst Erlang process from the ready queue.

(The ready queue is really a queue in order to maintain a round-robin scheduling

policy.) This process is assigned a number of reductions to execute. The time

it takes to execute these reductions is called the time-slice of the process. Each

time the process does a function call a reduction is used. The process is sus-



3.2 JAM 11

Figure 2: The execution loop of the Erlang run-time system.

pended when the time-slice is up (the number of remaining reductions reaches

zero), or when the process reaches a receive and there are no matching mes-

sages in the mailbox.

Each time a process gets suspended the scheduler places the process last in

the ready queue, and adds the number of executed reductions to a running total.

When the running total exceeds a major time-slice the scheduler is halted and

control is returned to the top-level loop.

If the size of the major time-slice is increased, more time is spent executing

Erlang code but the interactivity of the system decreases since I/O is checked

less often.

3.2 JAM

JAM [24, 3] is a stack-based byte code emulator for Erlang. The version of

JAM that we will be looking at is a modi�ed version of JAM version 4.5.3.

To this version we have added support for measurements and support for the

integration with HiPE. The development of JAM has not stood still while we

have been developing HiPE, the latest version of Erlang provided by Ericsson

is at the time of writing 4.8.
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3.2.1 Code

The JAM instruction set is implemented with byte codes, making it compact.

Code is loaded one module at the time, when needed. Code is patched at load

time (for example with indices into the atom table).

3.2.2 Data representation

TUPLE

ATOM foo

LIST

barATOM

NIL

LIST

INT

2

42

ARITY

Figure 3: Representation of the term f42, [foo, bar]g.

All basic values are represented in one machine word (in this case 32 bits). A

tag is stored in the four most signi�cant bits, leaving 28 bits for the value. Small

integers, atoms and [] (the empty list) can be stored directly in a machine word.

For more complex values, such as lists and tuples, a pointer to a heap-allocated

object is stored in the word. A list cell on the heap is just two consecutive

words. Tuples consist of a header, containing the arity of the tuple, and their

elements, as in Figure 3.

3.2.3 Emulator

The C-compiler gcc has a feature that makes it possible to take the address of

a label and use it as a code pointer. This feature is used in the JAM system to

implement so called threaded emulation.

3.2.4 Calls

According to the speci�cation of Erlang, there are two types of calls: local calls

(calls within a module) and remote calls (calls to functions in other modules).

Since all functions in a module are loaded at the same time the relative address

for the destination of a local call can be determined at compile time. However,
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the destination of a remote call can change at run-time, therefore the emulator

has to perform a table lookup for each remote call.

Two \registers", called ARGS and VARS, are used to keep track of the stack:

ARGS points to the �rst argument of the current function, and VARS points to

the �rst local variable.

Before entering a function, the function arguments are pushed on the stack

(as shown at the top of the downward growing stack in Figure 4). Then a stack

frame is written, containing the return address, a pointer to the code of the

calling function (CC, Current Call), and the old values of ARGS and VARS.

ARGS is set to point to the �rst argument, and VARS to point to the �rst

free stack position. When the function returns, the frame is popped from the

stack and the return value is pushed (on the same stack position as the �rst

argument).

Ret. Addr

CC

ARGS’

VARS’

Argument 1

Argument N

VARS
ST

ARGS

Figure 4: The stack after a call.

3.2.5 Tweaking

When we did our �rst measurements we discovered that the JAM system spent

much more time in privileged mode than HiPE and BEAM. This was because

the JAM system had a much smaller major time-slice than BEAM and HiPE.

Therefore the JAM system spent more time polling for I/O.

Since there is no reason why JAM should have a higher level of interactivity

than BEAM or HiPE we increased the major time-slice for the JAM system. The

response time to external events (such as socket communication) will increase

because of this modi�cation, but as for now we have not noticed any ill e�ects

because of it.
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3.3 BEAM

BEAM [8, 9, 10] is a threaded emulator for an abstract register machine. The

design of BEAM is inuenced by the Warren Abstract Machine (WAM)[1], which

was designed for the language Prolog and used in many Prolog implementations.

3.3.1 Data representation

All basic values are represented in one machine word (in this case 32 bits).

Like JAM BEAM uses 4 tag bits, but unlike JAM, they are stored in the 4 least

signi�cant bits of the word. A list cell on the heap is just two consecutive words.

Tuples start with a header containing the arity of the tuple, followed by their

elements.

3.3.2 Emulator

The temporary and permanent registers are called X and Y registers as in WAM.

These "abstract machine registers" are in reality stored in memory in an array,

except for register X0 which is stored in an actual machine register.

The emulator is directly threaded; each instruction in the code is a pointer

to the part in the emulator that implements the instruction. The emulator reads

this instruction from memory and jumps to the code it points to. As for JAM

this means that the gcc compiler is needed, since the address of a label in the

C-code can be accessed in gcc.

For most instructions, the emulator �rst prefetches the next instruction to

execute, before it starts executing the current instruction.

3.3.3 Code

Some information, such as atom numbers and function indices, is not known at

compile time. Therefore the code is patched with this information at load time.

Some instructions are also replaced by specialized versions at load time. For

example: instructions that take register X0 as an argument are replaced by a

special version of the instruction that directly works on the X0 register.

It is also at load time that the external representation of each BEAM instruc-

tion is replaced by the actual address to the emulator code for that instruction.

3.3.4 Compilation

The BEAM compiler does a somewhat better job at optimizing the Erlang

code than JAM. For example pattern matching is compiled better than in JAM,
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even though a full pattern matching compiler as described in [19] is not imple-

mented.

3.4 HiPE

HiPE is the name of our project, the High Performance Erlang project at

Uppsala University. We have developed our run-time system on top of version

4.5.3 of Ericsson's JAM[13]. The main goal has been to implement a native

code compiler for the SPARC architecture.

3.4.1 Integration with JAM

In the HiPE run-time system we can run both emulated JAM code and native

compiled SPARC code, within the same Erlang process. To make it possible

for emulated and native code to share data on the same heap we use the exact

same tagging scheme in HiPE as in JAM.

However we do not want to use the same calling convention in native code

as in JAM, since it would incur an unnecessary overhead to pass all arguments

on the stack and maintain the ARGS and VARS registers that HiPE does not

need, as it uses registers instead of a stack. Instead HiPE passes the �ve �rst

arguments in registers and only uses a one word stack frame, containing the

previous return address.

We have two stacks for each process, one used in the emulator and one in

native code.5 This solution does have some quirks since there can be catch-

frames6 that are linked with relative o�sets on the frame and the whole stack

might have to be moved if the process needs more stack space.

Since native code usually runs faster than emulated code we use a higher

number of reductions when we in native code check whether the time-slice for

the current process is up than we use in the emulator.

This is an imperfect scheme if one mixes execution of emulated code with

execution of native code, since the scheduling might be di�erent for mixed code

than for only emulated or only native code. Still, this scheme is su�cient for

our immediate needs.7

5A previous Erlang implementation (JERICO) [12] used a scheme with only one stack.

It turned out to be rather complex to maintain the integrity of the stack with two di�erent

calling conventions.
6A catch-frame indicates where an exception handler is located.
7The di�erences in the sizes of time-slices for native and emulated code does not e�ect our

benchmarks since all executed code is compiled to native code.
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3.4.2 Compilation

The HiPE compiler is for the moment a run-time compiler only. That is, it can

only compile Erlang code that has been loaded into the JAM emulator, and it

can only compile and link into memory; there is no external binary code format.

(The intermediate code formats of the compiler can be saved to �les as Erlang

terms, but this is rather clumsy.)

Memory

Native
Code

JAM
Code

JAM

ICode

RTL

SPARC

Erlang runtime system

Data

JAM
EMULATOR

Figure 5: Intermediate representations in HiPE.

The compiler has four intermediate representations; a high level intermediate

code called ICode, a general register transfer language in two avors called

RTL(1) and RTL(2), and a machine speci�c assembly language called SPARC.

In Figure 5 the relationship between these representations are shown, note that

RTL(1) and RTL(2) are shown as one representation since RTL(2) is a superset

to RTL(1).

In the �rst stage the stack-based JAM code is translated to a register machine

with an in�nite number of registers. This is done in two steps: �rst we do a

simple translation which introduces some unnecessary anti-dependencies in the
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code, but these are then removed in the second step, which is a register renaming

pass.

In the second stage the ICode is translated to RTL(1). In RTL(1) all calls are

assumed to implicitly save all registers. Also reduction counting and garbage

collection checks are implicit. After performing some optimizations (such as

common subexpression elimination and constant propagation) on RTL(1) the

code is translated to RTL(2) where the handling of stack frames, time-slices,

and garbage collection checks becomes explicit. A second pass of constant prop-

agation can then be done.

In the third step the code is translated from RTL(2) to SPARC code, where a

graph coloring register allocation is performed. The SPARC code is an extended

subset8 of ordinary SPARC assembler represented as Erlang terms.

In the last step symbolic constants such as atoms and addresses to functions

and built-in functions are translated to immediates. Then memory is allocated

and the code is linked with the rest of the system.

All destination addresses of calls in native code are hard-coded by the linker.

A code server keeps track of all call sites so that they can be back-patched when

the implementation of the callee function is changed. This way we can support

hot-code loading with no extra cost for normal execution, not only on a per

module basis but per function. The extra cost is paid at load time by the native-

code server that keeps track of all call sites and performs the back-patching.

8Some instructions such as oating point instructions are not implemented as we do not

use them. Some extra instructions such as load atom are added to make life easier.
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4 Experimental setup

We have conducted our experiments on an UltraSPARC made by Sun Microsys-

tems. The UltraSPARC is a high performance super-scalar processor. It is ca-

pable of sustaining the execution of up to four instructions per cycle (IPC ). To

achieve this level of instruction level parallelism the UltraSPARC uses multiple

execution units, a pipelined architecture, branch prediction and prefetching.

This makes it hard for a programmer to predict the performance of the

machine code. Many aspects a�ect the number of instructions that can be

dispatched at a time and it is often the case that a program does not execute

several instructions per cycle. In many cases the number of instructions per

cycle is less than one, and one talks about the number of cycles per instruction

(CPI ) instead, which on the UltraSPARC ideally is 0.25.

To help programmers, and especially to help compiler writers, the Ultra-

SPARC has the ability to gather low level performance information. With this

information it is possible to �nd out how well a program is utilizing the hard-

ware.

We have extended our HiPE system so that we can gather this low level

information in an easy and e�cient manner. We have also extended the HiPE

system in other ways to enable other kinds of performance pro�ling.

In this section we will describe the Sun UltraSPARC architecture, what

kind of information the low level performance counters can gather, and the

performance extensions made to HiPE.

4.1 Hardware

We run our benchmarks on a 143 MHz single processor Sun Microsystem Ultra

1 Model 140 with 128 MB of memory running Solaris 2.6. We use this system

because it is the fastest single processor UltraSparc system at our department.

(In the section about performance measurement on UltraSparc (Section 4.2) we

describe the problems of using a multiprocessor system when measuring.)

This processor has a hierarchical memory system, several execution units, a

nine stage pipeline capable of issuing up to 4 instructions per cycle, and dynamic

branch prediction.

4.1.1 Memory architecture

The memory consists of 128 MB of main memory, an external cache (level 2

cache) of 512 KB, and two 16 KB on-chip caches. An overview of the architecture
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On-chip data cache: On-chip instruction cache:

sub-block sub-block

0 1

+---------+---------+ +-------------------+

| | ^ | | ^

| | | | | SET 0 | | 256

| | | 512 | | v lines

| | | | +-------------------+

| | | lines | | ^

| | | | | SET 1 | | 256

| | v | | v lines

+---------+---------+ +-------------------+

<------------------> <----------------->

32 bytes line 32 bytes line

<-------> <-------> (8 instructions)

16 bytes 16 bytes

can be seen in Figure 6.

The external cache can handle one access per cycle. These accesses are

pipelined and after 3 cycles 16 bytes are returned.

The on chip data cache is a 16 KB direct mapped cache, organized as 512

lines with two 16 byte sub-blocks per line. A reference to the external cache

returns one such sub-block.

The instruction cache is a 16-KB pseudo-two-way set-associative cache with

32 byte blocks. That means that there are two sets of 256 lines with 8 instruc-

tions in each line. The address of an instruction is conceptually divided into

two parts, the address part (bits 31 to 5) and the o�set part (bits 4 to 0). The

address part is further divided into a tag (bits 31 - 14) and an index (bits 13 to

5).

The UltraSPARC also has a Load Bu�er and a Store Bu�er. Loads that

misses the on-chip data cache are bu�ered in the Load Bu�er until the external

cache returns the requested data. In this way the pipeline (see below) will not

need to stall if a load misses the cache, unless the result of the load is needed

by the other instructions in the pipe. All store instructions are bu�ered in the

Store Bu�er (whether they stall or not) this way the pipeline need not stall

because of a time consuming stall, unless the Store Bu�er is full. In the Store

Bu�er, consecutive stores may, under certain conditions, be grouped to improve

store bandwidth.
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4.1.2 Pipelining

Pipelining is a processor implementation technique that exploits parallelism

among the instructions in a sequential instruction stream by starting the ex-

ecution of a new instruction before the execution of the current instruction is

�nished.

Figure 6: Memory and pipeline architecture on UltraSPARC.

The UltraSPARC 1 has a 4-way SuperScalar design with 9 execution units,

4 integer execution units (IEU ), 3 oating point execution units (FPU ), and 2

graphics execution units (GRU ).

The pipeline is a 9-stage instruction pipeline. The pipeline can be seen in

Figure 6, where each letter in the pipeline corresponds to one of the stages as

follows:

Fetch (F) { (Pre-)fetches up to four instructions from the instruction cache.
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(See Section 4.1.3)

Decode (D) { Decodes the fetched instructions and inserts them into the in-

struction bu�er.

Grouping (G) (or Dispatch) { Groups and dispatches up to four instruc-

tions from the instruction bu�er (to the appropriate execution units).

Execution (E) { Executes integer instructions and calculates virtual addresses.

Cache Access (C) { Accesses the data cache, and resolves branches.

Load Miss (L) { If a cache miss is detected, the instruction causing the miss

is stored in the load bu�er.

Integer pipe wait (I) { The integer pipe waits for the oating point/graphics

pipe to �nish.

Trap Resolution (T) { Any traps are resolved.

Writeback (W) { All results are written to the register �les and instructions

are committed.

A 9 stage pipeline implies that there is a latency of up to 9 cycles for each

instruction. Therefore it is important to keep the pipeline full at all times so

that at least one instruction �nishes in each cycle.

4.1.3 Prefetching

To keep the pipeline full, each instruction fetch fetches four instructions to the

instruction bu�er. However, if the address for fetching points to one of the three

last instructions in an instruction cache line, only one, two, or three instructions

are fetched instead of four.

Prefetched instructions are stored in the instruction bu�er of at most 12

instructions, until they are sent to the rest of the pipeline.

Instructions can be prefetched from all levels of the memory hierarchy, in-

cluding the instruction cache, the external cache and the main memory.

4.1.4 Prediction

The UltraSPARC uses both static and dynamic branch prediction. To dynam-

ically predict the outcome of a branch, a two-bit history of the branch is main-

tained. The bit �eld is shared between every two instructions in the instruction

cache.
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The bit patterns in the bit �eld represents the information not taken, not

likely taken, likely taken, and taken[17].

This information is used as described in [11]: the prefetch unit interprets

the �rst two states to mean that the branch will not be taken and the last two

to mean that the branch will be taken. When a branch is taken it is updated to

the taken state, unless it is in the not taken state, in which case it is updated

to the not likely taken state. When a branch is not taken it is updated to the

not taken state, unless it is in the taken state, in which case it is updated to

the likely taken state.

By using static branch prediction the bits can be initialized by the compiler

to either not likely taken or likely taken.

The processor also has branch following, the ability to rapidly fetch predicted

branch targets. A next �eld associated with groups of four instructions in the

instruction cache points to the next instruction cache line to be fetched. The

next �eld points to the next line in the instruction cache for sequential code. If

the group contains a branch that is predicted taken then the next �eld points

to the line and o�set of the destination of that branch.

4.2 Performance measurement on UltraSPARC

On UltraSPARC processors, low level performance information can be gathered

and accessed at run-time. For example, the number of executed instructions and

the number of elapsed clock cycles can be counted. Other interesting aspects

include the number of cycles spent stalling because of di�erent types of cache

misses, and the number of cache references and cache hits.

The UltraSPARC CPU has two registers that are used for performance data.

The Performance Control Register (PCR) and the Performance Instrumentation

Counters (PIC ). These registers reect events that happen on a per-processor

basis.

The PCR is used to control what to measure; this is done by writing a

bitmask to the register. This bitmask tells the processor what two aspects to

count. It also tells the processor whether to count events in user mode or in

privileged mode, or the sum of events in both modes. The two halves (PIC0

and PIC1) of the PIC register are specialized to measure di�erent aspects.

In our system we can measure:

� Elapsed cycles and issued instructions, giving us the possibility to deter-

mine the CPI (cycles per instruction) ratio for our programs.
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� Cache references and cache hits for the data cache, the instruction cache,

and the external cache.

� The number of cycles the processor spends stalling because of branch

misprediction and instruction cache misses.

� The number of cycles spent stalling because the store bu�er is full.

� Load stalls, that is, stalls because a loaded value is needed but not present.

� The number of cycles the pipeline is stalled when a load is delayed because

an earlier store is incomplete. These stalls are classi�ed as a read after

write (RAW ) stalls.

4.2.1 Problems

There is no way to clear the PIC register, so we can not control when the register

will wrap. Therefore we have to take wraparounds into account when doing our

measurements.

Fortunately the e�ect of this problem is rather easy to spot, and any erro-

neous values can be discarded.

The performance counters are speci�c to a particular CPU, therefore we

have to run our benchmarks on a single processor machine or bind the process

to a speci�c CPU. Otherwise there is a risk that the operating system would

schedule the process to di�erent CPUs at di�erent times thus rendering the

measurements totally useless.

The PIC register is a 64-bit register but Solaris 2.6 is not a full 64-bit oper-

ating system. This means that only 32-bits of a 64-bits register are saved and

restored when a context switch occurs. If we are very unlucky we can get a

context switch after we have read the PIC register but before we have saved the

value to memory. This could cause that part of the value to become corrupted.

It is improbable that this will happen, especially since we do not run any

other 64 bit programs (except for the OS) when we do our measurements. If this

problem would occur, then it would not occur at the same place and in the same

way at every run. This means that if we make several runs and they all pro-

duce similar measurements, we can conclude that we have not been drastically

a�ected by this problem. To handle this in practice, we run the benchmark

several times and compute the standard deviation, maximum, minimum and

average values for these runs.

The PIC register is process independent. This means that we measure the

behavior of all processes running concurrently on the CPU, and not only our
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benchmark process. This we deal with by running on an unloaded machine.

Still we do get some interference from other processes but the e�ects are small

compared to the total measurements. It would be preferable to have an operat-

ing system that could keep the performance registers process speci�c by saving

and restoring the values when a process switch occurs.

There is also the risk that some counters are overlapping. The load stall

counter for example might sometimes count the same cycle as the misprediction

stalls counter. This means that the total number of stalls as compared to the

total execution time might be a little bit too high. There is unfortunately no

easy way to determine if this has happened.

4.3 Instrumentation of HiPE

In our run-time system we have added some performance instrumentation. Each

instrumentation is included or excluded from the system at compile time (of the

run-time system).

These instrumentations fall into two broad categories: counters and PIC

measures. The counters are just incremented by one each time the execution

passes through them. The PIC measures on the other hand are done by �rst

reading the PIC register before an event and than reading it again after the

event. The di�erence between the value before and the value after is then

added to an accumulating counter.

All these counters can then be reset or read by calling special BIFs. The

PCR can be set by calling a BIF that controls what to measure.

We can also, from an Erlang program, by a call to a BIF read the value in

the TICK register that counts cycles.

4.3.1 Counters

Each time a function is called, be that locally, remote, or by a meta-call (apply),

a counter for that function is incremented. We can also record each call to a

built-in function. For each sent message the program counter of the receiving

process can be recorded together with the program counter of the sender.

In the HiPE run-time system there is an interface between the C-code of the

emulator/run-time system and native compiled Erlang code. The execution

passes through this interface when native code is suspended or needs to perform

garbage collection or calls emulated code. The same interface is also used when

execution passes from emulated code to native code. Each pass through this

interface can be counted.
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Each execution of a JAM instruction in the emulator can be counted. For

native code we can also turn on basic block pro�ling. Then we can see how many

times each basic block is executed. This way we can see exactly how many times

each native code instruction is executed, and hence also which instructions that

are not executed at all.

4.3.2 Performance counters

The counter in the PIC register can be accumulated at several points in the

HiPE system. The time spent in garbage collection, the time spent in each BIF,

the time spent in native code, and the time spent in each time-slice can be

measured.



26 5 PERFORMANCE ON SEQUENTIAL CODE

5 Performance on sequential code

Before we start to examine the large programs, let us look at how the compilers

behave on a very small sequential benchmark.

The benchmark, length, computes the length of a 20,000 element long list

10 times. For each measurement we run this benchmark 20 times (with each

system) and compute the average.

The systems we have looked at are HiPE 0.2, JAM 4.5.3 (modi�ed), and

BEAM 4.3. We have also done a simple measurement with erlang:statistic/1

to compare JAM 4.5.3 (modi�ed) with 4.5.3 unmodi�ed and with JAM 4.7.3 to

see how our changes have a�ected the emulator and to see how a more modern

emulator behaves. Our modi�cations to 4.5.3 has made it about 5% slower than

the unmodi�ed version and JAM 4.7.3 is about 8% faster than the modi�ed

JAM 4.5.3 on this benchmark.

The length benchmark consists of two functions iterate/2 and len/2. The

function iterate/2 is responsible for calling the function len/2 a given number

of times (10 in the case of these measurements). The function len/2 calculates

the length of the list in the �rst argument by using the second argument as an

accumulating parameter (see Code 1).

Code 1 (The code for the benchmark length)

-module(length).
-export([iterate/2]).

iterate(0, _) -> ok;
iterate(X, L ) ->
len(L, 0),
iterate(X-1, L ).

len([_|X], L ) ->
len(X,L +1);

len([], L ) ->
L.

5.1 Generated code

We will look at generated code from the tree di�erent compilers in order to get

a feeling for how they di�er. We will not look at the complete length benchmark

but at the function len/2.

5.1.1 Generated JAM code

The �rst 13 instructions of the JAM code (see Code 2) is the inner loop of

len/2. These are the instructions used to traverse the 20,000 elements long list
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and count the number of elements.

The �rst instruction (info(length, len, 2)) just tells the emulator which

function it is executing (length:len/2). The second instruction sets the fail-

point to label 15, this means that if any following test fails execution should

continue at label 15. Then room for one local variable (X ) is allocated. The

�rst argument is pushed on the top of the stack.

Then a test whether the top of the stack contains a list (actually if it is a

cons cell, not the empty list nil) is performed. If the test fails execution will

continue at the fail point (label 15). This test also pushes the head and the tail

of the list on the top of the stack if it succeeds.

If the test succeeds the head of the list is discarded (poped). Then the tail

of the list is saved in variable 0 (X ). The failpoint is now removed commit so

any test that fails will result in an exception. The variable X is then pushed

back on top of the stack, followed by the second argument (L) and the integer

1. Then 1 is added to L since they are on top of the stack when the addition

operator is executed.

Now the function can recursively be called with X and (L + 1) as arguments.

This then goes on until the list is empty and the unpkList instruction fails to

label 15 where the accumulated parameter L is returned.

Code 2 (The JAM code for the function len/2)

length len 2:
info(length,len,2)
try me else(15)
alloc(1)
arg(0)
unpkList
pop
storeVar(0, var,0)
commit
pushVar(0,var,0)
arg(1)
push(1)
binop('+')
enterlocal(length,len,2)

15:
try me else fail
arg(0)
get([])
commit
arg(1)
ret

Each JAM-instruction requires at least one load for the instruction, and another

load for the address of the code of the instruction followed by a jump. This
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means that in addition to the actual code that does the work there are at least

36 SPARC instruction in the inner loop of the benchmark. And even if all JAM

instructions were as small as the smallest (pop, one extra SPARC instruction)

there would be 48 SPARC instructions in the loop. But most JAM-instructions

are more complex than that. The instruction enterlocal executes at least 30

SPARC instructions. In total JAM needs 240 SPARC instructions to execute

the inner loop of the benchmark.

5.1.2 Generated BEAM code

The BEAM code also begins with an instruction that indicates which function is

being executed but this instruction is not executed in each iteration of the inner

loop. The �rst argument is always in register x(0) in BEAM. This register is

tested to see if it contains a nonempty list. If not execution continues at label 9

otherwise at the next instruction.

The next instruction reads the head and the tail of the list to registers x(0)

and x(2). Then the integer 1 is added to register x(1) which contains the

second argument (L). If anything goes wrong here then an exception is thrown

indicating the function beginning at label 39.

Now the registers x(0) and x(1) contains the arguments x and (L+1) re-

spectively. The instruction call only is then used to check if it is time to

suspend the process and jump back to label 3 otherwise.

The loop is then repeated until the end of the list when execution continues

at label 9 where the accumulated length L is moved to the return register x(0)

before the function returns.

Code 3 (The BEAM code for the function len/2)

len 2:

39: func info(length,len,2)
3: is_nonempty_list(x(0)) failto 9

x(0), x(2) := get_list(x(0))
x(1) := arith('+', 1, x(1)) failinfo(39)
call_only(3)

9: is_nil(x(0)) failto 10
x(0) := x(1)
return

10: function_clause_error(39)

The inner loop is just 4 BEAM instructions, and it only takes 47 SPARC in-

structions to execute the inner loop for BEAM.
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5.1.3 Generated native code

HiPE generates native code from JAM code, making the general structure of

the native code similar to the JAM code, but as opposed to JAM, most local

values are stored in registers instead of on the stack. The native code does of

course become a lot longer than the virtual machine code for JAM or BEAM.

We will therefore look at it in several steps, describing each part by itself. First,

in Code 4, the inner loop is described, followed by the base case (Code 5). Then

we will show how process suspension is handled (Code 6) and �nally in Code 7

we show how bad arguments are handled.

Code 4 (The SPARC native code for the inner loop of the function len/2)

length_len_2:
.length_len_2_13: ! External entrypoint

mov %r8, %r3
mov %r9, %r5

.length_len_2_1: ! Loop entrypoint
add %r21, 1, %r21 ! 1 Inner
subcc %r21, 4000, %r0 ! 2 loop
bge,pn %icc, .length_len_2_2 ! pred: 0.01 ! 3
nop ! 4

.length_len_2_3: ! No suspension
srl %r3, 28, %r1 ! 5
subcc %r1, 10, %r0 ! 6
bne,pn %icc, .length_len_2_5 ! pred: 0.50 ! 7
nop ! 8

.length_len_2_4: ! It is a cons
and %r3, %r27, %r4 ! 9
sethi 262144, %r1 ! 10
srl %r5, 28, %r2 ! 11
or %r1, 1, %r1 ! 12
lduw [%r4+4], %r4 ! 13
or %r2, 1, %r2 ! 14
subcc %r2, 1, %r0 ! 15
bne,pn %icc, .length_len_2_9 ! pred: 0.01 ! 16
mov %r1, %r3 ! 17

.length_len_2_12: ! The arguments are integers
sll %r5, 4, %r1 ! 18
addcc %r1, 16, %r2 ! 19
bvs,pn %icc, .length_len_2_9 ! pred: 0.01 ! 20
nop ! 21

.length_len_2_8: ! No Overflow
srl %r2, 4, %r2 ! 22
sethi 262144, %r1 ! 23
or %r2, %r1, %r2 ! 24

.length_len_2_10: ! Keep looping
mov %r4, %r3 ! 25
ba .length_len_2_1 ! 26
mov %r2, %r5 ! 27
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This code is in no way optimal, there are optimizations (such as hoisting of loop

invariant expressions) that could make each iteration of the loop even smaller.

We are doing a quite straightforward compilation of the JAM code to native

code, which still gives a considerable speedup.

In native code all tests that are implicit in the code for the virtual machines

has to be done explicit. We have to explicitly check whether it is time to suspend

the process, whether both arguments to the addition are �xnums, and whether

the addition caused overow. If all this is OK and the argument is a cons cell

then we can keep on looping. For HiPE generated native code the inner loop is

just 27 SPARC instructions.

At some time the end of the list is reached and then the execution continues

at the label length len 2 5 (see Code 5). Here we check whether the argument

is nil, if that is the case the accumulated length is moved to the return register.

Code 5 (Base case of len/2)

.length_len_2_5: ! No cons but is it nil?
subcc %r1, 9, %r0
bne,pn %icc, .length_len_2_7 ! pred: 0.01
nop

.length_len_2_6: ! It is nil
mov %r5, %r8
jmpl %r15+8, %r0 ! (%r8) ! Return the result
nop

When traversing a 20,000 elements long list the processes will need to be sus-

pended every now and then, this is done with the code at label length len 2 2

(see Code 6).

Code 6 (Process suspension in len/2)

.length_len_2_2: ! The time-slice is empty
st %r3, [%r22+4] ! Save the process state
st %r15, [%r22+0]
st %r5, [%r22+8]
call swapout_0 ! () ! suspend
add %r22, 12, %r22
lduw [%r22+-8], %r3 ! Restore process state.
lduw [%r22+-4], %r5
lduw [%r22+-12], %r15
ba .length_len_2_3 ! Keep on working...
sub %r22, 12, %r22

The code must also be able to handle the cases when the function is called

with the wrong arguments or the �xnum counter for the length of the list over-

ows. This code is shown in Code 7 but is never used when the benchmark is

run.
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Code 7 (Bad arguments handling in len/2)

.length_len_2_9: ! Do general arithmetic
st %r4, [%r22+4]
mov %r5, %r8
mov %r3, %r9
st %r15, [%r22+0]
call op_add_2 ! (%r8, %r9)
add %r22, 8, %r22
lduw [%r22+-8], %r15
mov %r8, %r2
sethi 2359296, %r1
subcc %r9, %r1, %r0
lduw [%r22+-4], %r4
bz,pn %icc, .length_len_2_11 ! pred: 0.01
sub %r22, 8, %r22

.length_len_2_14: ! Did the add succeed?
ba .length_len_2_10
nop

.length_len_2_11: ! No... (should never happen.)
! %r2 = 'badarith'
mov 0, %r2
lda bif_exit_1, %r1
mov %r2, %r8
jmpl %r1+0, %r0 ! (%r15, %r8)
nop

.length_len_2_7: ! Bad argument (not a list)
! %r2 = 'function_clause'
mov 0, %r2
lda bif_exit_1, %r1
mov %r2, %r8
jmpl %r1+0, %r0 ! (%r15, %r8)
nop

5.2 Speedup

If we for each system S measure the number of clock cycles (TS) it takes to ex-

ecute the benchmark we can calculate a rough performance ratio for the system

(RS). We do this with the formula RS = TJAM=TS where TJAM is the number

of clock cycles for JAM.

The measured average number of clock cycles for each system is: TJAM �

63:32 � 106, TBEAM � 14:07 � 106, THiPE � 3:93 � 106.

This gives us the performance ratios TJAM = 1, TBEAM � 4:5, THiPE �

16:1 as illustrated in Figure 7.
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Figure 7: Performance ratio for the benchmark Length.

5.3 Instructions and clock cycles

If we look at the number of instructions that are executed and compare that

to the number of cycles it takes to execute the benchmark (Figure 8), we can

see that only the HiPE compiled program manages to execute more than one

instruction per cycle (actually 1.42 instructions per cycle (IPC) or 0.7 cycles

per instructions (CPI)).

This is not an optimal result since we are using an UltraSPARC that is

capable of issuing up to four instructions per cycle (a CPI of 0.25), but compared

with other programs it is a good result. For some C and C++ SPECint95

programs, compiled with gcc and executed on an UltraSPARC-II, the CPI varies

from 0.83 to 2.13 with a mean of 1.52 for C++ and 1.17 for C [20].

One must bear in mind that a low CPI is not a goal in itself since it can be

achieved trivially by executing no-ops. Also, one could argue that a dynamically

typed language such as Erlang does a lot of "unnecessary" work (tagging and

untagging) which is easy for the processor to parallelize.
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Figure 8: The number of executed instructions (in millions) and execution time

(in millions of clock cycles) for the benchmark Length.

5.4 Pipeline Stalls

The number of executed SPARC instructions in one iteration of the inner loop

of length is 27 for HiPE, 47 for BEAM and 240 for JAM. The main reason that

JAM needs more instructions than BEAM and HiPE is that JAM that uses a

stack has general instructions for function calls and for example for arithmetic.

Another reason is that JAM needs instructions to read and write to the stack.

BEAM on the other hand does not use a stack and instead has instructions that

take several arguments. HiPE can specialize the JAM instructions at compile

time and does not use the stack for intermediate values.

Figure 9 shows the total execution time in clock cycles for the three systems.

At the bottom of the bars we see the number of million cycles spent stalling

because of instruction cache misses. On top of that we see misprediction stalls

and load stalls. All other stalls are less than 100,000 cycles and included in the

rest of the bar with the non-stalling execution time.

The benchmark is so small that all the native code �ts in the instruction

cache, hence the time spent stalling because of instruction cache misses is less

than 1% of the execution time.

In the JAM emulator the code for one JAM instruction is used in several
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Figure 9: Total execution time and pipeline stalls for the benchmark Length.

di�erent contexts rendering the dynamic branch prediction mechanism virtually

useless. Therefore the JAM emulator has problems with mispredictions.

If all pipeline stalls were removed from JAM it would still only execute about

one instruction per cycle (48.6 M instructions in 49.1 M cycles). HiPE would

execute 1.75 instructions per cycles if all stalls where removed. The pipeline can

contain from one to four instructions per stage and unfortunately we cannot see

from the performance counters how many instructions are in the pipeline while

it is stalling. It might be that several instructions are stalled for each cycle that

JAM is stalling, and for each instruction that HiPE stalls only one instruction is

stalled. Therefore we cannot be sure that HiPE not only stalls less but actually

has a better scheduled code that can be grouped easier. It does seem very

likely though. This does not, however, mean that HiPE has a better scheduler

than JAM, it just indicates that in this case the HiPE instructions can be more

parallelized.

5.5 Di�erent types of calls

One reason why HiPE shows exceptionally good performance result on length/2

is that HiPE can compile a tail-recursive call to a real loop if the caller and

the callee are the same function. We can show this by making four simple
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Figure 10: Speedup ratio of execution times for benchmarks with di�erent types

of calls in HiPE compared to JAM.

benchmarks that executes a given number of calls.

These four small benchmarks are used to determine the relative speedup for

HiPE compared to JAM on di�erent types of calls. There are two "dimensions"

to the benchmarks: The �rst dimension is tail-recursive compared to non-tail-

recursive calls, and the second dimension is calls to the same function compared

to calls to another function.

The functions only perform some simple arithmetic in order to make the call

itself as important as possible. The di�erent benchmarks are not meant to be

compared to each other; it is the relative speedup of each benchmark that is to

be compared.

% -------------------------------------------------
% Here we do a tail call to another function.
% -------------------------------------------------
tail_call_other1(X) when X > 0 ->
tail_call_other2(X-1);

tail_call_other1(0) ->
0.

tail_call_other2(X) when X > 0 ->
tail_call_other1(X-1);

tail_call_other2(0) ->
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0.

% -------------------------------------------------
% Here we do an ordinary call to another function.
% -------------------------------------------------
non_tail_call_other1(X) when X > 0 ->
non_tail_call_other2(X-1)+1;

non_tail_call_other1(0) ->
0.

non_tail_call_other2(X) when X > 0 ->
non_tail_call_other1(X-1)+1;

non_tail_call_other2(0) ->
0.

% -------------------------------------------------
% Here we do an ordinary call to the same function.
% -------------------------------------------------
non_tail_call_self(X) when X > 0 ->
non_tail_call_self(X-1)+1;

non_tail_call_self(0) ->
0.

% -------------------------------------------------
% Here we do a tail call to the same function.
% -------------------------------------------------
tail_call_self(X) when X > 0 ->
tail_call_self(X-1);

tail_call_self(0) ->
0.

When we run these benchmarks so that 100,000 calls are made and calculate

the speedup ratio between HiPE and JAM as we did for length it is even more

evident that tail-recursive calls is what HiPE does best (Figure 10). Here we

can see that a tail-recursive loop in HiPE can be 12 times faster than in JAM.

Other types of calls, those that are not compiled into loops, are only about 8

times faster than JAM.

Things are further complicated since there is a di�erence between calls within

a module and between di�erent modules, but it gives an indication that HiPE

will get the best result on the type of functions that are "self tail-recursive"such

as length. We cannot expect as good results on Erlang programs with a mix

of di�erent types of calls as we could see on length.

5.6 Conclusion

The inner loop of length can be compiled into a tight (27 SPARC instructions)

loop. Since this loop is executed 20,000 times with each branch in the loop going

in the same direction each time the branch prediction hardware works very well

resulting in a good utilization of the pipeline.
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The speedup for HiPE compared to JAM has two reasons: HiPE executes

less instructions than JAM, and HiPE utilizes the pipeline better.

HiPE executes less than 12% of the number of instructions JAM executes.

If the code would be run on a processor that always executed one instruction

per cycle this would result in a speedup of more than 8.6 for HiPE over JAM.

By utilizing the pipeline better, HiPE can execute almost twice (actually

1.87 times) as many instructions per cycle as JAM. We conclude that HiPE

utilizes the pipeline better because JAM su�ers from misprediction stalls and

load stalls, and because more instructions in the native code loop generated by

HiPE can be grouped together, and thus executed in parallel by the hardware.

If we take the lower number of instructions to execute together with the

better utilization of the pipeline we get a total speedup of 16 (8.6 * 1.87) times

for HiPE over JAM.

Unfortunately we can not expect this kind of speedup on all Erlang pro-

grams, since length is really just a small loop which is the kind of function that

HiPE is getting an extra edge on.
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6 The Eddie benchmark

Eddie [5, 21] is the name of an e�ort to make a exible and robust web server.

This server can be distributed geographically and still maximize the web server

throughput. Eddie also supports updates to the server without disturbing the

service of the server.

Our benchmark is the HTTP parser in Eddie which parses HTTP GET

requests. A GET request is what a web browser sends to a server for example

when the browser wants a web page. The parser consists of four modules, and a

�fth is added for the benchmarking purposes in addition to the Erlang/OTP

standard libraries that are also heavily used.

The benchmark consists of 159 di�erent functions that are called a total of

about 30 thousand times. The total JAM code size of the called functions is

13,806 bytes.

The argument to the parser is a list of 30 complex GET requests. Before

starting the benchmark these requests are read from a �le. The code used to

read the requests from �le is not benchmarked.

The benchmark starts by spawning a HTTP server which is implemented

with the gen server module provided by OTP. In the benchmark there are 5

sends from �ve di�erent functions.

The benchmark uses 139 di�erent JAM instructions. The total number of

executed JAM instructions is 718,364.

6.1 Instructions and clock cycles

Cycles (M) SPARC Instrs. (M) CPI

JAM 17.64 12.66 1.39

BEAM 6.70 4.35 1.54

HiPE 2.79 2.61 1.07

Table 1: Average execution time in million of cycles, number of millions executed

instructions, and CPI for the HTTP parser

If we compute the speedup for BEAM and HiPE as compared to JAM we

can see that BEAM is 2.63 times faster than JAM, and that HiPE is 6.32 times

faster than JAM. If we compare HiPE and BEAM we can see that HiPE is 2.40

times faster than BEAM.
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6.2 Pipeline stalls

Figure 11 shows the total execution time in clock cycles for the three systems as

a bar chart. At the bottom of the bars we see the number of million cycles spent

stalling because of instruction cache misses. On top of that we see misprediction

stalls, read-after-write stalls, load stalls, and store stalls.

Figure 11: Stalls in comparison to total execution time for the Eddie HTTP

parser benchmark.

Both JAM and BEAM spends about 23% of their time stalling because

loaded values are needed before the load is completed. For HiPE the load stalls

takes about 18% of the execution time.

JAM and BEAM also spend 10% of the execution time stalling because of

mispredictions, while the corresponding number for HiPEis 4%.

On the other hand, the percentage of instruction cache stalls is almost 14%

for HiPE and only 2% and 3% for JAM and BEAM.

In total these benchmarks have about the same problems with stalls HiPE

and JAM stalls about 36% of the time while BEAM stalls about 37% of the

time. HiPE makes up for this by having the lowest CPI, executing almost 1

instruction per cycle.
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Call type Calls %

Remote tail call 188 0.6%

Remote call 1,218 3.7%

Local call 4,125 12.6%

Local tail call 25,231 77.3%

BIF call 982 3.0%

BIF tail call 545 1.7%

Apply call 6 0.0%

Apply tail call 333 1.0%

Total 32,628

Table 2: Number of di�erent calls in the HTTP parser.

6.3 Di�erent types of calls

There are several di�erent types of calls in Erlang that all have a di�erent

behavior at run time. For JAM, local calls are more e�ective than remote calls,

but for HiPE there is no di�erence between local and remote calls. HiPE is

faster than JAM on all remote calls, since HiPE does not need to look up the

destination of the call.

There are also some meta calls (apply) and some tail meta calls. The number

of each type of call for the HTTP parser benchmark is shown in Table 2.

6.4 Built-in functions

About 4.7% of the calls in the HTTP parser are to built-in functions. JAM

spends about 4.4% of the execution time in the 10 built-in functions that are

called. The most often called built-in function is element/2, which in HiPE is

always inlined in the native code. This is a small function and it only stands

for about 6% of the total time spent in built-in functions.

The built-in function that takes up most of this time (35 %) is db get/2.

This function does a lookup in, and a retrieval from, a database. It stands for

8% of the total number of calls to built in functions.

6.5 Conclusion

HiPEis 6.32 times faster than JAM and 2.40 times faster than BEAM on the

HTTP parser. BEAM is 2.63 times faster than JAM. All three systems spends
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JAM Cycles (M) Instr. (M) CPI

Not in BIF 16.87 12.15 1.39

In BIF 0.77 0.51 1.51

Total 17.64 12.66 1.39

% In Bif 4.4% 4.0%

Table 3: Time that JAM spends in built-in functions when running the HTTP

parser.

more than 35% of the time stalling, for HiPE it is mainly instruction cache stalls,

for JAM and BEAM it is primarily load stalls but also misprediction stalls.

As on length, HiPE and BEAM executes a lot less instructions than JAM,

and HiPE has a higher IPC than JAM and BEAM. This benchmark uses built-in

functions and concurrency. This together with the use of di�erent types of calls

probably is the reason that the speedup for HiPE is not as great as it was on

length.
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7 SCCT, the AXD 301 benchmark

We have examined SCCT, a part of an Erlang program used in AXD 301, a

modern ATM switch, developed by Ericsson.

AXD 301 is a new-generation high-performance ATM switching system. The

system scales from 10 Gbit/s up to 160 Gbit/s. The program has been designed

so that it can be upgraded without stopping the application, and particular care

has been taken to ensure high reliability [6].

The program uses about 480 thousand lines of Erlang code, 330 thousand

lines of C code and about 3 thousand lines of Java code. The C code is mostly

protocol stacks bought from third party vendors. The Erlang code is divided

into 845 di�erent modules.

In the design of this program the amount of concurrency was kept at a min-

imum. The designers did not want to have hundreds of thousands of concurrent

processes; therefore they decided to use a database in which "virtual" processes

are saved so that the Erlang run-time system does not need to keep all the

processes alive.

We have not looked at the whole AXD 301 application but at a relatively

small time-critical portion of it, called SCCT. SCCT is responsible for setting

up and tearing down connections in the switch. The code we have used is from

increment 6 of AXD 301, an earlier version than what is used in the product

today.

The benchmark consists of several databases that are setup once initially.

The heart of the benchmark consists of several lookups and updates to the

databases for each iteration.

The benchmark program is divided into 46 modules. The total size of the

JAM code for these modules is 635,270 bytes.

The benchmark uses 11 "background" processes; the startup and initializa-

tion of these processes are not measured in our benchmark. The process that

runs the benchmark creates another 2 processes for each iteration. We run 100

iterations of the benchmark, so there is a total of 212 processes involved, out of

which 14 are alive at a time. That is: 11 (background) + 1 (main) + 2 (new in

each iteration). The process communication is also kept at a minimum but for

a run of 100 iterations there are 3605 messages sent.

If we look at the run-time behavior of the benchmark we see that only

501 functions in the benchmark are called. And only some parts of the called

functions are used. In fact, when we compile the called functions we get a total

of 8,880 basic blocks in the code, of which only 2,919 basic blocks are used. This
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means that if we are not careful we might �ll up the instruction cache with a

lot of unused instructions.

Out of the 61,234 native compiled instructions 16,463 are actually executed.

Since each UltraSPARC instruction is 4 bytes, this means that we have about

64 kilobytes of code that is executed in the benchmark. We will look closer at

what this native code does, and where the time is spent.

In the rest of this section we will examine and analyze the results of our

benchmarking e�orts. We will �nd that while HiPE was nearly 16 times faster

than JAM on the benchmark length, it is only about 1.6 times faster on this

benchmark. We conclude that this is because much of the time is spent in built-

in functions and because SCCT has fewer tight loops that the HiPE compiler

can optimize really well.

On this benchmark the modi�ed JAM emulator is about 10% slower than

the unmodi�ed 4.5.3 system. The numbers for JAM that are presented in the

rest of the chapter are for our modi�ed JAM system.
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Figure 12: The total running time for SCCT.

7.1 Instructions and clock cycles

Our �rst measurement counts the number of instructions and clock cycles it

takes to execute the benchmark 100 times.
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We can see (Figure 12.) that the HiPE system is only about 40 percent faster

than the JAM system for SCCT, which is far from the 16 times speedup we saw

on length.

The HiPE system has lost its ability to run more than one instruction per

cycle. The number of cycles per instruction (CPI), where the ideal is 0.25, is

1.79 for BEAM, 1.56 for HiPE, and 1.52 for JAM. This means that, even though

HiPE and BEAM executes the same number of instructions, the execution time

for HiPE is lower.

We will not take a closer look at the time spent in garbage collection since

SCCT only spends about 2 million cycles out of 153 million doing garbage

collection.

7.2 Di�erent types of calls

Call type Calls

remote tail call 13,630 5%

remote call 21,144 8%

local call 60,112 24%

local tail call 36,197 14%

bif call 107,415 43%

bif tail call 10,830 4%

apply call 1,498 1%

apply tail call 1,800 1%

Total 252,626

Table 4: Number of di�erent calls in SCCT.

There are several di�erent types of calls in Erlang that all have a di�erent

behavior at run time. For JAM, local calls are more e�ective than remote calls,

but for HiPE there is no di�erence between local and remote calls.

There are also some meta calls (using the built-in function apply) and some

tail meta calls. The number of each type of call for SCCT is shown in Table 4.

Of these only some of the local tail calls may be tail-recursive calls to the

same function. This means that less than 14 percent of all calls can be turned

into e�ective loops by HiPE.

In HiPE we also have a very rudimentary handling of meta calls: we just

let the emulator take care of them. This means that HiPE actually is slower

than JAM on meta calls, since HiPE has to switch context from native code to
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emulated code to do a meta call. On the other hand, HiPE is faster than JAM

on all remote calls, since HiPE does not need to look up the destination of the

call.

7.3 The impact of the memory hierarchy

To see the e�ects of the memory hierarchy we will look at the pipeline stalls.
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9,8 8,2
20,9

17,8
8,5

4,5

35,6

27,7

0,5

0,9
0,4

89,9

65,6

55,4

15,6

0

20

40

60

80

100

120

140

160

180

JAM BEAM HiPE

C
yc

le
s 

(M
)

non-stalling

Store

Load

Mispredictions

IC

Figure 13: Pipeline stalls in relation to total execution time.

Since the emulated code is compact and the emulator can be small enough

to �t in the instruction cache, one could imagine that an emulator could do a

relatively better job in avoiding pipeline stalls than native code. But, as we shall

see, the gain in instruction cache stalls are counterbalanced by misprediction

and load stalls.

The time spent stalling compared to the total execution time, in millions of

clock cycles, is shown in Figure 13. As we can see the absolute number of stalls

is smaller for HiPE than for JAM.

7.3.1 Misprediction

The number of stalls due to mispredictions is higher for JAM than for HiPE. In

JAM the branch prediction hardware is rendered useless since the same emulator

code is used in several di�erent contexts.
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We can see this on a higher level in the following example:

Example 4 (Dynamic tests that in reality are static.)

if
A > 42 ->
if

B > 42 -> never happens;
true -> always happens

end;
true -> never happens

end

Even if the test A > 42 always succeeds and the test B > 42 never succeeds

they will both be implemented by the same piece of code in the emulator making

it impossible for the hardware to predict the outcome of the test.

In contrast, when we compile to native code each test will have its own

SPARC instruction. If the tests go the same way each time, the dynamic branch

prediction hardware will be able to predict the outcome of the tests.

HiPE can also do a good static prediction for some tests such as type tests

in arithmetic, which can be assumed to succeed.

One can say that HiPE specializes each JAM instruction with respect to

the Erlang function where it is used. Unfortunately HiPE has to pay for this

specialization with increased code volume.

7.3.2 Instruction cache stalls

The number of instruction cache stalls is about twice as many for HiPE as for

JAM. But taken together, the number of stalls from mispredictions and stalls

from instruction cache misses are about the same for JAM and HiPE.

7.3.3 Load stalls

Load stalls is the main source of pipelines stalls for JAM, since JAM has more

data accesses than BEAM and HiPE. Both code and data is stored in memory

and JAM uses a stack to store temporary and local variables, whereas HiPE

(and to some extent BEAM) uses registers.

On UltraSPARC there is no automatic prefetching, branch prediction, or

bu�ering on data as on native instructions making the choice to have code as

data less interesting.

So in absolute numbers the native code is a winner: HiPE stalls about 20 Mc

less than JAM. If we on the other hand look at the relative time spent stalling

shown in Figure 14 we can see that no matter which implementation we use,

about 40% of the time is spent stalling.
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Figure 14: Pipeline stalls in percent of total execution time.

7.4 Concurrency

In the benchmark there is no preemptive suspension; all process switches oc-

cur because the running process reaches a receive statement with an empty

mailbox.

By pro�ling the message passing we found that 3605 messages were sent

from 18 di�erent places in the code. What is more interesting is that for each of

these 18 points the receiver of the message was always waiting for that speci�c

message. That is for each of the 18 types of messages the receiver was always

at the same point in the code with an empty mailbox. This kind of behavior is

more thoroughly described in [14].

7.5 Built-in functions

The HiPE system uses the same built-in functions (BIFs) as the JAM system.9

We have made measurements in the JAM system since all calls to built-in func-

tions from JAM goes through the "call-bif" instruction making it easy to mea-

sure these calls. In JAM about 49 million cycles are spent in built-in functions,

9When we talk about BIFs in this paper we refer to the built-in functions that are imple-

mented as C functions in JAM system 4.5.3.
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that is about 32 percent of the total execution time.

In JAM there are 118,245 calls to 26 di�erent built-in functions in the bench-

mark. Since the benchmark is executed 100 times there are several BIFs that

has an even hundred of calls to them. Many built-in functions are only called a

couple of times in each iteration and are uninteresting.
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Figure 15: The number of million cycles spent in di�erent types of code when

executing SCCT. The values for Built-in functions for HiPE and BEAM are

approximated, as well as the GC-times.

Since all three systems uses the same garbage collector and the same built-in

functions we can approximate the time spent in built-in functions and garbage

collection for HiPE and BEAM to the same as for JAM. Since the built-in

element/2 is inlined directly in HiPE we remove the time JAM spent in element/2

from the approximated time spent in built-in functions (see Figure 15).

If we remove the time spent in the operating system, in built-in functions,

and in the garbage collector from the total execution time we get the time spent

executing Erlang code. This is 100 Mc for JAM, 57 Mc for BEAM and 50 Mc

for HiPE. The time HiPE spend in Erlangcode are the time we can a�ect with

optimizations in the compiler. For HiPEthis time (50 Mc) is only about 52% of

the total execution time (96.8 Mc).

By calculating the speedups on the time spent in Erlang code as opposed
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to on the total execution time we get that HiPE's speedup over JAM is 2.0 and

over BEAM it is 1.1. The speedup for BEAM over JAM is 1.9.

It is interesting to compare the total number of calls to BIFs (118,245) with

the number of calls to functions (134,321). The built-in functions stand for

32 percent of the execution time and 47 percent of the calls. It is therefore

unfortunate that in HiPE calls to built-in functions cost more than calls to

functions. (Calls to built-in functions in JAM are even more expensive.)

The most called BIF, element/2, is implemented in native code and inlined

by HiPE so in that case the overhead for the call is removed.

Stalls (Mc)

BIF Calls Inst. Mc Load RAW Store Misp IC

(M)

binary to list/1 2,502 0.6 1.0 0.4 0.2 0.0 0.0 0.0

db get/2 6,096 10.2 13.7 2.7 0.0 0.0 0.9 0.6

db get element/3 2,400 1.0 2.0 0.5 0.0 0.0 0.1 0.2

db match/2 300 0.4 0.8 0.1 0.0 0.0 0.0 0.2

db put/2 1,318 11.4 14.0 2.2 0.0 0.1 1.0 0.7

db update counter/3 1,012 0.4 0.9 0.2 0.0 0.0 0.0 0.2

element/2 80,363 5.1 5.1 0.5 0.0 0.0 0.3 0.2

list to binary/1 2,402 3.1 5.0 0.8 0.0 0.0 0.3 0.7

setelement/3 9,316 2.2 2.5 1.0 0.4 0.1 0.1 0.1

spawn link/3 200 0.6 1.4 0.3 0.0 0.0 0.1 0.2

split binary/2 1,902 0.4 0.7 0.2 0.0 0.0 0.0 0.1

Sum: 107,811 35.4 47.0 8.9 0.6 0.2 2.9 3.1

% of BIF total: 91% 98% 96% 96% 96% 99% 96% 88%

Table 5: Pipeline stalls for BIFs running more than 0.5 Mc in SCCT on JAM.

The percentages at the bottom shows how many percent these 11 BIFs stand

for as compared to all BIFs executed by SCCT.

7.5.1 Pipeline stalls for built-in functions

In Table 5 we can see the pipeline stalls for the built-in functions in JAM that

take more than 0.5 million cycles to execute. The columns show the name of the

BIF, the number of calls to the BIF, and the number of millions of instructions

executed while in the BIF, the number of millions of cycles executed while in

the BIF, the number of millions of cycles spent stalling (because of load stalls,

read-after-write stalls, store bu�er stalls, misprediction stalls, and instruction



50 7 SCCT, THE AXD 301 BENCHMARK

cache stalls, respectively). As can be seen in the bottom line of the fourth

column, these eleven BIFs stand for 96 percent of the execution time spent in

built-in functions.

We can see that all these built-in functions have problems with load stalls;

they are stalling 9{45% of their execution time.

The built-in functions binary to list/1 and setelement/3 have the high-

est percentage of load stalls; they also stand for almost all read-after-write stalls

(RAW). In Section 8.2.3 we will explain where these read-after-write stalls come

from and how to eliminate them.

7.5.2 Built-in database functions

More interesting in terms of absolute performance are the two built-in functions

db get/2 and db put/2. They stand for 57 percent of the time spent in built-in

functions, and 18 percent of the total execution time. These BIFs are used

to manipulate a RAM database that resides outside the process heap. The

database is implemented as a hash table with buckets implemented as linked

lists. These lists sometimes need to be searched through and data needs to be

copied to and from the process heap. This can take some time and cause some

stalls, but not more than about 30 percent of the execution time of the database

functions is spent stalling; this is less than the JAM system as a whole.

7.5.3 Conclusion

The SCCT benchmark is a large benchmark, the size of the executed native

code is 64KB, and the total size of the 501 called function is in native code 239

KB.

The execution times are 153.4, 110.9, and 96,8 million clock cycles for JAM,

BEAM, and HiPE respectively. Thus HiPE is only about 40% faster than JAM

on SCCT, but if we take into account and discard the time spent in built-in

functions, in the garbage collector, and in the operating system then we can say

that HiPE is 2 times faster than JAM.

BEAM executes just as many native code instructions as HiPE. There are

several reasons for this:

� The instruction set for BEAM is more powerful and better designed than

JAM's instruction set.

� BEAM has a more powerful compiler than JAM.

� BEAM has a better handling of pattern matching than JAM.
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� BEAM uses registers instead of a stack and do not have to shu�e data

back and forth to the top of the stack.

� BEAM has a more e�ective way of saving local variables during function

calls than HiPE.

HiPE has problems with instruction cache stalls (20.9 Mc) while JAM and

BEAM are troubled by load stalls (35.6 Mc and 27.7 Mc) and misprediction

stalls (17.8 Mc and 8.5 Mc). All three systems spends about 40% of their total

execution time stalling.

This indicates that even though HiPE runs into problems with the instruction

cache because of the size of the program, HiPE do not su�er more from this than

JAM and BEAM su�ers from other types of stalls. The main reason that HiPE

do not get the same speedup as on length is that much of the time is spent in

code outside its control, such as built-in functions and garbage collection.
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8 Future work

In this section we discuss what the HiPE group will do in the future. First

we look at the areas that needs further investigations (Section 8.1). Then we

describe the areas we feel are important to address in order to get better exe-

cution times in HiPE (Section 8.2). Finally we look at some optimizations that

we would like to examine in order to see if they would be bene�cial to HiPE

(Section 8.3).

8.1 Further investigation

There are (some) questions that are raised but not answered by this report.

Here we will look at a few of them and speculate in what the answers might be.

8.1.1 Why is BEAM so much faster than JAM?

In this section we will try to come up with some explanations to why BEAM

is so much faster than JAM. It will be mostly speculations though, since it has

not been a goal within this investigation to answer this question. There are

probably several reasons why BEAM is faster than JAM. BEAM has a more

advanced compiler and a more advanced virtual machine. The measurements

show that:

� The percentage of instruction cache stalls is less for BEAM than for JAM

on SCCT (and about equal on the http parser).

� The percentage of mispredictions for BEAM is less than for JAM on SCCT

(and about equal on the http parser).

� The percentage of load stalls is less for JAM than for BEAM on SCCT

(on the http parser BEAM has a slightly smaller percentage of load stalls

than JAM).

� BEAM has a tiny bit of store bu�er stalls. (JAM none)

� BEAM is considerably faster than JAM overall.

The BEAM instructions are more powerful than the JAM instructions so the

number of instructions needed for a particular task is less for BEAM than for

JAM. This results in less native code to execute for BEAM than for JAM, since

there is an overhead for each abstract machine instruction to execute. JAM

also has to execute a lot of stack manipulating instructions whereas BEAM can
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operate directly on the registers where the arguments are stored. This results in

an even smaller number of abstract machine instructions for BEAM compared

to JAM. This can at least partly explain both the di�erence in instruction cache

misses and the overall speedup.

BEAM has less mispredictions, possibly, because it has many di�erent in-

structions, while JAM has just a few general instructions. The risk of getting

the same instruction twice in a tight loop is lower for BEAM than for JAM.

This has two e�ects.

The �rst e�ect has to do with the threaded implementation of the emula-

tors. Both JAM and BEAM are threaded so the implementation of each virtual

machine instruction ends with a jump to the next instruction. If a BEAM in-

struction only occurs once in a loop, it is possible for the hardware to predict the

destination of the jumps between instructions in the emulator. JAM probably

has several pop and push instructions in each loop, if each pop is followed by a

di�erent JAM instruction, then the hardware will prefetch the wrong SPARC

instructions.

The second e�ect is similar. The risk of having the same test instruction for

two tests going in di�erent directions is also lower for BEAM than for JAM,

since BEAM has di�erent instructions for example depending on which register

to test.

Pattern matching is compiled more e�ciently in BEAM than in JAM. Let

us look at an example. In the simple pattern matching example (Example 5)

we have four di�erent patterns that are mutually exclusive, which means that

we could test them in any order we want. The best would of course be to group

all clauses containing a tuple together (in rough pseudo code):

� 1. Is arg0 a tuple then 2a else 2b.

� 2a. case element(1, arg0 ) of

{ a: return(element(2, arg0 ))

{ b: return(element(2, arg0 ))

{ d: return(element(2, arg0 ))

{ default: fail.

� 2b. is arg0 the atom c then return(c) else fail.

Example 5 (Erlang code for matching a simple pattern)
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test(fa, V g) -> V ;
test(fb, V g) -> V ;
test(c) -> c;
test(fd, V g) -> V.

Unfortunately neither JAM nor BEAM does this. JAM just tests each clause

by itself until a match is found (Example 6). BEAM groups similar patterns

together as long as no "non-similar" patterns come in between (Example 7).

The method of BEAM is of course more e�ective than that of JAM so that

should explain some of the overall speedup for BEAM. (It also partly explains

why BEAM can get quite close to the performance of HiPE. Since Erlang

functions tend to rely heavily on pattern matching it is important to have a

good pattern matcher, but HiPE is stuck with the naive pattern matcher of

JAM.)

Example 6 (JAM code for Example 5)

info(pattern,test,1) ; This is the function pattern:test/1
try_me_else(22) ; Set up label 22 as the fail point
alloc(1) ; Make room for a local variable (V)
arg(0) ; Get the first argument
unpkTuple(2) ; Is it a tuple of arity 2? (no -> 22)
get(a) ; Is the first element the atom a?
storeVar({0,{var,0}}) ; Bind variabel V to element 2
commit ; Remove the fail point 22
pushVar({0,{var,0}}) ; Get vaiable V
ret ; Return (V)

22: ; Label 22 (the first fail point)
try_me_else(23) ; Set up label 23 as the fail point
alloc(1) ; Make room for a local variable (V)
arg(0) ; Get the first argument
unpkTuple(2) ; Is it a tuple of arity 2? (no -> 23)
get(b) ; Is the first element the atom b?
storeVar({0,{var,0}}) ; Bind variabel V to element 2
commit ; Remove the fail point 23
pushVar({0,{var,0}}) ; Get vaiable V
ret ; Return (V)

23: ; Label 23 (the second fail point)
try_me_else(24) ; Set up label 24 as the fail point
arg(0) ; Get the first argument
get(c) ; Is it the atom c? (no -> 24)
commit ; Remove the fail point 24
push(c) ; Make the atom c
ret ; Return (c)

24: ; Label 24 (the third fail point)
try_me_else_fail ; No fail point (execption in stead)
alloc(1) ; Make room for a local variable (V)
arg(0) ; Get the first argument
unpkTuple(2) ; Is it a tuple of arity 2? (no -> fail)
get(d) ; Is the first element the atom d?
storeVar({0,{var,0}}) ; Bind variabel V to element 2
commit ; Remove the fail point 24
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pushVar({0,{var,0}}) ; Get vaiable V
ret ; Return (V)

The pattern matching in JAM is very much inspired by the one used in the

WAM. For example, JAM uses fail points to keep track of where to continue

execution when a test fails. This means that the test instruction does not have

to contain information about where to continue execution if the test fails.

As can be seen in Example 6, JAM has to test if the argument is a tuple,

for each clause, then it has to read the �rst element of the tuple from the heap,

for each clause, and test it against an atom. The only exception is of course the

third clause where it can test against the atom c directly.

Example 7 (BEAM code for Example 5)

44:
func_info('pattern','test',1)

1:
ifnot is_tuple(x(0)) then 6
ifnot arity(x(0)) == 2 then 6
x(1) := get_tuple_element(x(0), 0)
ifnot x(1) == 'a' then 2
x(2) := get_tuple_element(x(0), 1)
x(0) := x(2)
return

2:
ifnot x(1) == 'b' then 3
x(2) := get_tuple_element(x(0), 1)
x(0) := x(2)
return

3:
6:

ifnot x(0) == 'c' then 4
x(0) := 'c'
return

4:
ifnot is_tuple(x(0)) then 5
ifnot arity(x(0)) == 2 then 5
x(1) = get_tuple_element(x(0), 0)
ifnot x(1) == 'd' then 5
x(2) := get_tuple_element(x(0), 1)
x(0) := x(2)
return

5:
function_clause_error(44)

In BEAM each test instruction contains information about where to continue

execution. The instruction ifnot ... else is not the actual BEAM instruc-

tion but used here for clarity of the code. This means that each type of test is

coded as a di�erent instruction, and not as it might seem here as just di�erent

arguments to the ifnot ... else instruction.
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As can be seen in Example 7, BEAM can group the two �rst clauses together

since they both are tuples, but then it gets confused by the fact that c is an

atom and not a tuple. In the fourth clause, BEAM must, again, check if the

argument is a tuple and load the �rst element if it is.

8.1.2 Emulation versus native compilation

One aspect that we feel needs further investigation is the advantages and dis-

advantages, to execution speed, of native code as compared to emulated code.

There are also other aspects of emulated code, such as easier tracing and

debugging, smaller external formats, and ease of porting to other platforms,

but we are interested in the execution times.

The argument that a small emulator can �t entirely in the instruction cache

and that it therefore would have an advantage against clumsy native code seems

hollow. It is true that the emulator does not have trouble with instruction cache

misses, but it does have trouble with pipelines stalls because of mispredictions

and load stalls.

There might be emulator implementation techniques that can remedy this,

and this would be interesting to investigate.

8.1.3 Are there unnecessary calls to built-in functions?

The built-in functions are responsible for a big percentage of the execution

time, and some of them might be hard to optimize further. It would therefore

be interesting to know if some of the calls to these functions could be eliminated.

The short answer is yes. We know that some tuple operations could be

grouped. For example some record operations in Erlang are compiled to

several consecutive setelement/3 calls. These could all be done at once sav-

ing much overhead. Even though there are many calls to setelement/3 and

element/2 that could be grouped or removed, they do not stand for a consid-

erable amount of the time spent in built-in functions.

We would like to know how it is with the more time consuming database

functions, maybe some of those are redundant or could be grouped if there are

several updates to the same database record.

8.1.4 Major timeslice e�ect on JAM cache

There is one disturbing e�ect that we have discovered but not been able to

explain. This is the e�ect on the length benchmark of increasing the size of

time-slices in JAM.
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An increased time-slice resulted in an increase in both instruction cache stalls

and in load stalls, this could be expected. When we increased the time-slice so

that the process did not get suspended at all during the length benchmark, this

resulted in a reduction in the instruction cache stalls but also in an increase in

load stalls, while the total execution time was unchanged. We have not been able

to explain this behavior but neither have felt it important enough to investigate

further yet. It would be interesting to investigate this further so that complete

understanding of the problem could be reached.

8.2 How to improve HiPE

Here we will present some optimization techniques that we think are important

in order to get increased performance in HiPE. One thing that we have seen

is that even though the few low level optimizations that HiPE performs are

e�ective on a small tight loop, the impact on larger programs is a lot smaller.

We have also seen that a lot of time is spent in built-in functions. There are two

ways to decrease the time spent in built-in functions. The �rst is to make the

built-ins themselves more e�ective. The second is to reduce the number of calls

to built-ins by making the calling code more e�ective and remove redundant

calls.

Most of the optimizations we describe here have already proved their useful-

ness for other languages and we feel con�dent that they will also work well for

Erlang.

8.2.1 The front end

Today HiPE is using the same front end as JAM. This means that we have

inherited the naive pattern matching, and that there basically are no high level

optimizations in HiPE. One way to rectify this would be to use the BEAM front

end, but even though it is better than JAM it still does not contain all high-level

optimizations we would like to have in HiPE.

As we have seen HiPE is quite e�ective on the very small length benchmark

but not as good on the larger ones. Today HiPE works on extended basic blocks

or at most whole functions when optimizing. We belive that a better job could

be done if HiPE had a large scope to optimize. This is hard and expensive

(measured in compile time) on the low level, but easier on a higher level, since

the size of the code is smaller on a higher level than on a lower.

A lot of time is spent in some very expensive built-in functions. It might be

hard to optimize these functions but it might be that some of the calls to these
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function are redundant. This might be recognized by a higher level optimization

and redeemed.

A lot of work in the native code is spent on type checks. This is not directly

evident from the measurements presented in this report. Though it is not hard

to imagine that a dynamically typed language would show such a behavior and

when we have studied the produced native code we have seen this. It would be

desirable to have an analysis that could guarantee that certain values have a

certain type, in order to remove the type tests.

It would also be interesting to have a new common high level intermediate

language that would allow us to express high level optimization in an easy way,

and to share these with other Erlang implementations.

Therefore we think that we need a new front end.

Core Erlang A new intermediate language, Core Erlang, has be developed in

order to get a simpler and cleaner language to perform high level optimizations

on. This language has been developed by the HiPE group in cooperation with

OTP and the Computer Science Lab at Ericsson. One of the goals of Core

Erlang has been to provide a common platform for compiler optimizations of

Erlang in order to facilitate a faster technology transfer between industry and

academia. Much of the work of the design and implementation of Core Erlang

has been done by Richard Carlsson.

Core Erlang has the same expressive power as Erlang but is much simpler

from the view of a compiler writer. It is fairly easy to translate an Erlang

program to a Core Erlang program and vice versa.

Today the HiPE group has an Erlang to Core Erlang translator, a Core

Erlang to Erlang translator, and soon also a Core Erlang to ICode trans-

lator.

Module Merging As we mentioned earlier we would like to get larger scopes

for the compiler to optimize. One way to do this without having to write a

complete inter-functional optimizer is by inlining. Unfortunately the hot code

loading semantics of Erlang makes this hard, except for within a module.

One often used way to implement an abstract datatype in Erlangis to put

all primitives for the datatype in its own module. This can make a simple access

to an element in such a data structure more expensive than necessary, since a

remote call has to be done. We would therefore like to have inlining across

module boundaries.

In order to facilitate this we think that a technique that we call Module
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Merging could be useful [16]. Module Merging is the ability to take two (or

more) Erlang modules and merge the code in those modules in such a way

that remote calls between the modules can be replaced with local calls. Module

Merging will also preserve the code replacement semantics of Erlang so that

if a new version of the code for any of the merged modules is loaded, then the

new code will be used instead of the old merged code.

After Module Merging is applied to two modules it will be possible to also

inline function calls that before were between modules.

Inlining Function calls are expensive, at least if they are not tail recursive

calls where the caller and the callee are the same function. HiPE would get rid

of some call sites by inlining, and in mutually recursive functions, one of the

functions could be inlined and the other turned into a self-recursive function.

Inlining will also pave the way for further optimizations that now are local

to a function.

Pattern Matching Compilation Today HiPE uses the same pattern match-

ing as JAM, since we use the same front end. As we have seen, this can result

in a lot of unnecessary work. Since pattern matching plays such a central role

in Erlang we think it deserves a better treatment.

An algorithm for e�ective pattern matching compilation is described by

Philip Wadler in [19]. Richard Carlsson has implemented a pattern match-

ing transformation on Core Erlang based on this algorithm. It has already

shown very promising results on some informal measurements.

Patterns in receive statements can not be optimized on the Core Erlang

level. This is because the pattern matcher needs access to messages in the

mailbox without removing them, a functionality that neither Erlang nor Core

Erlang provides.

The HiPE intermediate code, ICode, provides the means to look at a message

in the mailbox and only extract the message if it matches any pattern, therefore

the CoreErlang to ICode compiler will be able to optimize patterns in receive

statements.

Type Analyzer As noted before, a lot of work is done to check that arguments

to primitive operators have the right type. This is a price that Erlang have

to pay for the powers of being dynamically typed. We believe that this price

sometimes could be avoided.
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By performing abstract interpretation on Core Erlang it should be possible

to obtain information about types in Erlang programs. This information can

then be used by the compiler, for example to remove redundant type checks.

One "side e�ect" of the type checking is that some bugs in the analyzed

program can be detected. This is a result that we already have seen with the

type analyzer being developed by Sven-Olof Nystr�om.

Partial Evaluation One often mentioned bene�t of Erlang is that it comes

with a large standard library and an even larger library provided by OTP.

These libraries provides general solutions to common problems, which makes

development in Erlang very rapid.

Generality does of course come with a cost in performance. Fortunately this

does not have to be the case. With partial evaluation [15] these general library

functions can automatically be specialized with regards to the application at

hand. We believe that partial evaluation together with Module Merging will do

wonders to the generic functionality provided by OTP.

Richard Carlsson is working on a partial evaluator for Core Erlang.

8.2.2 The run-time system

Even though we feel that the front end is where we can gain the most in per-

formance there are some adjustments that could be done to make the run-time

system better.

The tagging schemes in JAM and BEAM are not ideal, especially not for

the UltraSPARC architecture. In HiPE today the tags are in the four most

signi�cant bits. We think that a scheme with sub tags in the least signi�cant bits

would make pointer dereferencing and arithmetic cheaper. Mikael Pettersson

has designed and implemented such a scheme for Erlang.

Since OTP constantly is improving the Erlang system and today there

is a free open source version of Erlang, it would be nice if HiPE could take

advantage of the improvements and at the same time make HiPE available to

others. Therefore it would be interesting to integrate HiPE with open source

Erlang.

One other aspect of the run time system is the relation between the processes

heaps and the garbage collection algorithm. We will talk more about this below.
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8.2.3 Built-in functions

Since the built-in functions are so important (32% of the execution time for

SCCT in JAM) they deserve a closer look. The small ones could be inlined

directly in the native code, others could be rewritten in Erlang, ICode, or

RTL.

The built-in database Today the database is placed outside the heap and

data has to be copied to and from the database. If the data in the databases

could be left on the heap a lot of time could be saved.

RAW stalls in setelement The built-in function setelement/3 takes a tuple

(T ), a position (N), and a new element (E), and returns a new tuple identical

to T except that the Nth element is replaced by E. This is done by �rst copying

the entire original tuple, with the following C code:

res = make_tuple(BIF_P->htop); /* Get hold of new tuple */

*BIF_P->htop++ = *tuple_ptr++; /* Copy arity */

while (size--)

*BIF_P->htop++ = *tuple_ptr++; /* Copy each element */

The address to the heap top is stored in the process structure in each iter-

ation and that value is then read in the next iteration. This causes the load to

stall since it will be scheduled together with (or directly after) the store, and

that store will take at least one clock cycle to complete. This type of stall is

called a read-after-write stall or RAW-stall.

If we rewrite setelement/3 with a local variable instead of BIF_P->htop

then the read-after-write stalls are eliminated and the total execution time for

setelement/3 in the SCCT benchmark drops from 2.5 Mc to 1.7 Mc, a gain of

about 30%.

The absolute performance gain for SCCT would be small since the total time

in setelement/3 is only 2.5 Mc out of 153 Mc.

This implementation glitch is �xed in later versions of Erlang where all

the built-in functions have gotten a thorough overhaul. This shows that these

low level measurements can be of real use when tuning time critical code.

As we could see with the built-in function setelement/3 even the really

small built-in functions need to be closely examined to make sure they are

e�ectively coded.
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8.2.4 Standard optimizations on intermediate code

As we have seen the low level optimizations that HiPE performs today do not

have the same impact on large programs as on small ones.

Since there are almost no loops in the intermediate code of HiPE today, there

are many standard optimization techniques that would not be very e�ective.

Inlining should introduce some more loops making it interesting to add loop

optimization to HiPE.

Inlining would also make other optimizations that work within a function

more e�ective. With inlining it would be interesting with a more advanced

constant propagation, constant folding, etc, than what HiPE has today.

There are also a lot of other standard optimizations that could be interesting,

such as inter-procedural register allocation.

8.2.5 The back end

Since HiPE, as all three systems, spends about 40% stalling (at least for SCCT)

it is important with low level optimizations that can decrease the number of

cycles per instruction.

There are three techniques that we think can do this, instruction scheduling,

prefetching of code and data, and possibly the use of predicated execution.

Since so much time is spent in built-in functions and the run-time system

the absolute gain will not be that big even if all stalls in native Erlang code

could be eliminated. Therefore we would not like to put to much e�ort into this

at the moment.

It would also be nice to have more back ends than SPARC, at least a

x86/Linux back end and maybe a x86/NT back end.

One way to achieve both the goal of a better back end and the goal of more

back ends without too much e�ort would be to use for example ML-RISC or

C--[18].

Function calls As we have seen HiPE is much faster on tail-recursive calls to

the same function (when caller and callee are the same). This is partly because

this can be implemented as a one instruction branch. However all other types

of calls take three instructions in the current implementation.

We could change ordinary calls to branches in those cases where a branch

would be su�cient to reach its destination. This scheme would require some

extra work in the code loader, since hot code loading in HiPE is implemented

by back-patching the call site. This is because the back-patcher would have to
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be able to back-patch one instruction branches to three instruction jumps and

vice versa.

8.3 Possible optimizations to investigate

There are some optimizations that we think could have a positive impact on

HiPE but we are not as certain as with the ones described above. Still we think

that these optimizations deserve further investigation and that they probably

would have a positive e�ect. We will present these ideas here.

8.3.1 Optimizations of process communication

Message passing in Erlang is done with the send primitive, where the desti-

nation is computed at run-time.

For each send statement in the code there is often one matching receive

statement. In most cases (in the benchmarks we have studied and in the Er-

lang shell) the receiving process is suspended with an empty mailbox in this

receive statement.

This could be exploited by taking the code of the sender and the code of

the receiver and optimize them together. One could view this as inlining over

process boundaries as compared to over function boundaries.

This idea is presented in [14] and will be more thoroughly described in a

forthcoming paper.

8.3.2 A global heap

Today send is implemented by copying the message from the senders heap to

the heap of the receiver. Even though this has not showed up as a big cost in

the programs we have examined here it might be a problem for programs with

more concurrency. One thing that at least SCCT is su�ering from is the copying

of data to and from the ETS databases, which shows up as a lot of time spent

in the database built-in functions.

One way of solving both these problems would be to just have one common

heap for all processes. This would also decrease the total amount of allocated

data, since all processes can share the same copy of a data structure. With

this scheme GC becomes more complex, and there is a risk that the garbage

collection time will increase. Robert Virding at Computer Science Lab at Eric-

sson has experimented with one uni�ed global heap and describe two garbage

collector algorithms [23, 22]. The algorithm that seemed most promising, with

a simple generation scheme, had problems with large root sets, but no thorough
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evaluation of this algorithm has been performed. Today Mikael Pettersson is

working on the design of an incremental generational garbage collector that

seems to be able to solve these problems.

8.3.3 Compile-time GC

It is sometimes possible to �nd the last use of an object by doing liveness analysis

on heap allocated data. This information could be used, for example, to store

the object on the stack instead of on the heap and then reclaim the space as

soon as it is no longer needed.

Another, maybe even more interesting technique, would be to reuse the heap

space of the object. Take, for example, the built-in function setelement/3

which copies the entire original tuple. If an analysis could tell us that the old

tuple not is referred to after this call, we could safely mutate the tuple instead

of copying it.

A problem is that the analysis would probably need the whole program to

be really e�ective. Furthermore, special considerations would have to be taken

with regards to send if this technique were to be combined with a global heap

for all processes. But we can conceive scenarios where this technique could

prove interesting in combination with optimizations of process communication

as described in [14] and above.

This technique could be used for lists also, and we know that they are heavily

used in Erlang programs. One of the most called functions is lists:reverse/1.

Provided that the original list is not referred to afterwards, reverse could reuse

all cons cells from the original list.

A quick test shows that reversing a 2,000,000 elements long list takes about

5 s in emulated JAM code on our test machine if we force a garbage collection

just before the reversal. (If we do not force the garbage collection it takes a

very long time.)

If we compile the reverse function to native code it only takes about 290

ms. With reuse of cons cells it takes about 230 ms to reverse the list. The

destructive reverse does not need to copy the elements in the list thus making

it a little bit more e�ective.

The big gain comes from not needing any more heap space for the data; if we

do not force the garbage collection then a normal reverse in native code takes

about 1.5 s and a destructive reverse about 330 ms.

If we combine this technique with the global heap we need an escape analysis

that can se that data escapes when sent as a message. It could be potentially

more interesting for a system with one global heap to reuse heap space early
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since such a system need to keep the garbage collection times down. At the

same time this technique might be hard to combine with a generational garbage

collector, since we can get older objects that refers to younger objects.

8.3.4 Adaptive compilation

Many optimizations trade size for speed, larger more specialized code is faster

than smaller more general code. The problem for very large programs is that

not all the code can be specialized in this way, it would result in an enormous

code volume. The usual solution is therefore to let the programmer tell the

compiler what parts of the code are time critical, in order to get them heavily

optimized. The problem is that it can be hard for the programmer to know

exactly where the hot spot of the program is. One solution to that is to employ

adaptive compilation. With adaptive compilation the run-time system monitors

the execution of the programs and when a hot spot is identi�ed that part of the

code is recompiled with more optimizations.

Erlang is very well suited for adaptive compilation since hot-code loading

is a part of the language. In HiPE we can monitor the number of calls to each

function, and even the number of times a basic block in native code is executed.

We can also control the UltraSPARC low level performance counters directly

from Erlang code. This gives HiPE very good abilities to identify hot spots

and their nature.

This together with HiPE's ability to compile and recompile Erlang code to

native code with several levels of optimizations, makes it possible to try several

di�erent schemes of adaptive compilation.
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9 Conclusion

In this report we have shown how the HiPEgroup have instrumented three Er-

lang systems in order to enable several types of measurements, including very

low level measurements. We have also used this instrumentation to benchmark

these Erlang systems on real industrial programs, presented and analyzed the

results of these measurements and outlined a plan for a faster Erlang system.

9.1 Instrumentation of three Erlang run-time systems

By using the low level performance counters in UltraSPARC and other counters

in the emulators and run-time systems we have made it possible to monitor the

behavior of three Erlang run-time systems very closely.

The low level performance counters in UltraSPARC has given us the tools

to see the behavior of the pipeline and the memory hierarchy. There are some

problems with the precision of these counters, since they can be somewhat

overlapping, they can overwrap, and they measure all processes in the operating

system. By doing repeated measurements in intervals of about one second,

we get consistent results. The di�erences between the three Erlang run-time

systems are big enough to be signi�cant. This makes it possible for us to monitor

the low level behavior of these systems.

We can also see how much time the JAM system spends in built-in functions

and in garbage collection. We can see this on the same scale as the low level

measurements, and we can also measure the cache and pipeline behavior of the

built-in functions and the garbage collector.

We can also control the low level counters directly fromErlang code making

it possible to write complex monitoring applications in Erlang.

9.2 Real industrial benchmarks

It is unfortunately not common that researchers in functional programming

languages have large industrial programs to test their optimizations on. Often

the largest program is the optimizing compiler it self, an interesting program

but maybe not representative.

There are several reasons for this. For a new language there are often no

larger programs at all. If there are some large programs written they are proba-

bly not open source or available. And if they are available it is often much harder

to do good measurements on a large program than on a simple toy benchmark.

When we have tried to get our hands on "real" programs we have also often
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failed, even though the Erlang community has been very forthcoming and

interested in our project. The problem has been that since the programs are

real products, the programmers that want to share their programs with us have

not been allowed to do this by their superiors. Even if they have been allowed

to give us the source code they have been busy with the next version and have

not been able to tell us what the program does and how it is used and what

would be interesting to measure.

Fortunately we have been able to get some programs that are well suited

for performance measurements, because they have been designed to test the

performance of some aspect of a real program. Since the Erlang community

is very open and commited to their language we hope that we will be able to

get more industrial size benchmarks in the future.

The ones that we have gotten have shown us that these larger programs

behave quite di�erent from toy benchmarks such as length. This is not very

surprising.

We think that large real world applications are important for the evaluation

of research compilers, and in this report we have presented such an evaluation.

9.3 Analysis of the results

As we have seen the code volume for the native code is a lot larger than for JAM,

and one could imagine that this would be a problem on large programs. We

have seen that HiPE spend about 20% (on SCCT) of its time stalling because

of instruction cache misses but in absolute numbers the time spent waiting on

the instruction cache is small.

If we look at all stalls together both JAM and HiPE spends about 20% of

their time stalling. JAM has troubles both with load stalls and mispredictions.

The load stalls might come from JAM being a stack machine and from the

loading of JAM instructions. The mispredictions might be from the threaded

implementation of JAM and from the fact that the outcome of tests in JAM are

unpredictable.

Our conclusion is that a threaded implementation and a stack-based virtual

machine are not a perfect match with a modern superscalar RISC architecture

such as UltraSPARC.

We can also conclude that even simple and naive native compilation without

any instruction scheduling is e�ective even for large programs that do not �t in

the on-chip instruction cache.

For SCCT the performance for BEAM is not far from the performance of
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HiPE. It is hard for any one compiler to get a good absolute performance gain

on SCCT, since so much time is spent in built-in functions.

We think that HiPE faces three problems:

� HiPE uses the same front end as JAM

� HiPE only compiles one function at a time.

� HiPE can not improve on the time spent in built-in functions.

In order to tackle all three problems and get a signi�cant increase in perfor-

mance, an attack on a broad front is needed.

From the results we have seen we have been able to identify possible opti-

mizations that we think will be important for Erlang in the future. We have

also presented some interesting venues for further investigation.
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