The Design and Implementation of a
High-Performance Erlang Compiler*

Thomas Lindgren Christer Jonsson

ASTEC report 99/05
November 19, 1999

Abstract

This paper describes the design decisions and implementation of a
native code compiler for Erlang, a concurrent functional language. The
compiler translates byte codes into three different intermediate formats,
culminating in Sparc assembly code, which is dynamically linked into the
system. We critically examine our experiences with the decisions taken.

1 Introduction

Erlang is a functional language supporting concurrency, heterogenous distributed
execution, and soft real-time programming [1]. It is in daily use in switches, call
centers and internet servers, and similar high-availability products [2]. The Er-
lang implementations in use today are based on byte code emulation for porta-
bility, which hampers execution speed; a serious problem for high-performance
applications.

We have investigated Erlang implementation since 1996. The compiler de-
scribed in this document was developed as a second system, a “reaction” to a
previous implementation by Jonsson and Johansson, Jerico [3]. Jerico was writ-
ten in C and translated JAM byte codes into Sparc assembly. In the process,
it performed constant propagation, dead code elimination and similar optimiza-
tions, followed by simple register allocation and dynamic linking.

The current system, Hipe (for High-Performance Erlang), grew out of this
effort. Hipe was designed, built and debugged by the authors in 1997 and 1998.
(Erik Johansson concurrently wrote the dynamic linker of Hipe, which is not
described in this paper), and successfully ran call setup and call release for the
AXD 301, an ATM switch developed in Erlang by Ericsson, during late summer
1998.

*This work was done while Lindgren was at the Computer Science Department of Uppsala
University and at Ericsson Telecom AB, and Jonsson was at the Computer Science Department
at Uppsala University. Lindgren is currently at Bluetail AB; Jonsson is currently at Apicula
AB.




In this paper, we give an overview of the design decisions of our second
system and our implementation experiences. We then discuss their successes
and failures. The performance of compiled code is not treated quantitatively;
this is described elsewhere [8, 7]. These papers also describe some details of the
runtime system which we shall gloss over, such as exception handling and mixed
native/byte code execution.

2 Overview

Much as a conventional compiler, the Hipe compiler consists of a series of phases,
translating between various intermediate formats. In contrast with Jerico, which
was developed in C, we decided to write the compiler in Erlang itself, to provide
for faster development and greater robustness. Several design decisions were
taken as reactions to problems with the Jerico implementation.

2.1 Intermediate formats

In Jerico, the intermediate format (IF) was closed to developers and it was
difficult to write and debug new compiler passes. This was a great drawback
once we had passed the proof-of-concept stage. To encourage experimentation,
the Hipe compiler instead was designed with well-formed IFs and a flexible
main loop to accomodate new passes and optimizations. Each IF was intended
to catch a particular class of optimizations.

All of the IFs are based on control flow graphs (CFGs), where nodes are
basic blocks and arcs represent transfers of control. In contrast with ordinary
CFGs, the Hipe CFG can have multiple entry points. This is used to handle
exceptions. A procedure can have several failure entry points (one per catch) in
addition to the normal call entry point. If a callee throws an exception caught
by the current function, control will enter the function by one of the failure
entry points.!

Icode. The Icode IF assumes infinite registers and an implicit stack. There
are few datatypes or constants; building tuples, arithmetic and similar
operations are performed by function calls. Function calls take any number
of arguments.

The simplicity and small size of Icode means it is suitable for initial sim-
plifications, type analysis and type optimization, and inline expansion.
These optimizations are further discussed below.

RTL, RTL2. The register transfer language RTL is a machine-independent
IF similar to three-address code [4], intended to capture the conventional
compiler optimizations. The actual RTL instructions are similar to the
MIPS instruction set architecture [9].

n retrospect, this decision made a number of compiler algorithms more complex. For
example, dominators are no longer straightforward, and a number of optimizations and IFs,
such as SSA form, rest on dominators.



There are tagged and untagged registers. A tagged register holds a proper
Erlang value, while an untagged register holds an address, a raw integer
or some similar value. Untagged registers may never live over function
calls (including calls to the garbage collector), since that would make GC
too complex or too inefficient. The compiler enforces proper use of tagged
and untagged registers.

In RTL, the stack is implicit. RTL2 makes the stack frame and its contents
visible, which can enable further optimizations and simplifies translation
into Sparc code.

Sparc. The final format is an abstract Sparc assembly language. Some extra
operations are added (e.g., load_atom) which are resolved by the linker.

2.2 Translation steps

On the way to native code, there are a number of translation steps.

Jam to Icode. The function is disassembled from byte code into symbolic
JAM code and translated to the Icode IF. The JAM is stack based, while
Icode is register based; the translation uses a virtual stack to assign reg-
isters to stack slots. The JAM also has an implicit failure continuation,
which is translated by passing a fail-label to all tests. Common oper-
ations, such as element/3 or pattern matching, are inline-expanded into
tests and fetches. Some obviously poor sequences of JAM code are directly
translated peephole-style into more efficient Icode sequences than the con-
catenation of their isolated translations. Message receive operations are
translated into Icode loops.

Icode to RTL. The translation of Icode into RTL means large number of op-
erations (e.g., simple arithmetic, conses, tests) are inline expanded. Data
structures are turned into loads and stores. Tagging and untagging oper-
ations become explicit. Exception handlers are expanded into code. The
tagging scheme is made explicit in RTL so that constant propagation and
folding can be performed.

RTL to RTL2. The RTL to RTL2 translation introduces the stack frame into
the code. At a call, only the live variables are pushed on the stack; after
a call, only the variables used before the next call are popped from the
stack.

RTL2 to Sparc. The translation of RTL2 into the Sparc IF is straightforward.
Some purity is lost in the process: the Sparc uses condition codes rather
than direct tests, requires the use of continuation pointer registers, and so
on.



2.3 Optimizations

Hipe performs a number of common optimizations. The following optimizations
are done on Icode and the RTLs.

Unreachable code elimination. Unreachable basic blocks are deleted.

Dead code elimination. Side-effect free operations that write unused vari-
ables are eliminated.

Constant propagation and folding. Propagate and fold constants into op-
erations.

Copy propagation. Eliminate copies x = y by substituting y for z when
possible. (If 2 becomes unused as a result, the copy operation can be
deleted.)

Most of the optimizations work on extended basic blocks (EBBs, maximal
trees in the CFQG) rather than by fixpoint iteration, in order to save compi-
lation time (an EBB can be analyzed and optimized in a single pass). This
was probably a too conservative decision in retrospect: while outright loops are
uncommon in Erlang code, pattern matching generates CFG joins, which cut
off EBBs. This hinders optimization of complex pattern matching, which is
common in larger applications.?

When we arrive at the Sparc level, only one major optimization is performed:
register allocation. This is done by standard graph coloring over the entire CFG.
Since the interference graph has size quadratic in the number of nodes, register
allocation can be slow or even problematic for large functions.

The compiler subsequently schedules delay slots and calls the assembler and
linker.

2.4 Profiling

It is straightforward to add profiling counters to the code. The dynamic linker
provides directives to declare a scratch area for profiling counters, and code is
easily added to increment these counters. Our profiler adds counters to all Sparc
blocks and saves the Sparc CFG inside the system; after profiling is finished,
the Sparc CFG can be retrieved, annotated, reoptimized and relinked. (We
have currently only used the profiler to study execution characteristics of the
low-level code.) Storing all CFGs in memory does not scale to large programs,
where the CFG should be stored on disk; this is straightforward to add. The
overhead of naive basic-block profiling was found to be about 30%.

A second, coarse-grain profiler was developed by Lindgren and Johansson.
This works by adding a few builtin functions to set up the performance counters
of the UltraSparc-I and -II, but was only used to measure coarse-grain events

2We would also like to encourage the use of complex pattern matching, so generating good
code for it is important.



(e.g., the number of cache misses over an entire benchmark). This was due to
the high cost of reading the performance counters, and the cost to count the
number of events (this required a number of subtractions and adds, as well as
extra registers and a swelling in code size).

3 Implementation

We extended Erlang with builtin functions to destructively update terms (a
capability not normally found in the language). Based on these primitives, we
built persistent, constant-time access vectors and hash tables. As the compiler
has developed, these hash tables have become the dominant representation for
tables and graphs.

Since a number of optimizations are common to all three IFs, we wanted
to implement a single, common optimization pass and instantiate it with the
particular IF in question. This proved difficult in Erlang; we could have written
it as a callback module (as is done in OTP, for example), but that would impose
an extra cost. What we wanted were parametrized modules, to be instantiated
at compile-time and then used for free at runtime. It was simple to implement a
workaround using include files — the optimizer body is copied into the instance
file along with suitable macro definitions — but we feel that the solution exposes
a problem with Erlang’s module system.

Code sizes are shown in the Appendix.

4 Discussion

4.1 Successes

The resulting native code compiler generates efficient Sparc code. It is easily
extensible: new passes can be integrated efficiently, and using Erlang means it
is easy to code the optimizations once designed. Hipe compiles larger programs
than Jerico, and seems not to suffer from the ’second system’ syndrome.

Using three IFs turned out to be a good decision: Icode is a simple transla-
tion target; RTL can express machine-independent optimizations quite well and
is easily retargeted; the Sparc format is simple and to the point.

4.2 To be revised

We found that a number of optimizations are repeated in all the IFs. These are
constant propagation and folding, dead code elimination and some simplifica-
tions. We did not expect this development, but have found that it is essential.

The stack handling scheme is more important than we thought: for small
programs, execution stays in the leaf functions of the call tree, but as one han-
dles larger and larger applications, more and more time is spent in non-leaves,
essentially just pushing and popping the stack between calls. Our experiments
with reducing the stack frame size from four mandatory words to one were very



successful — at least as great a saving as dataflow optimizations in Jerico. Better
stack handling will probably yield a considerable improvement on that.

Common subexpressions were added to RTL, and had the effect of removing
the occasional superfluous untagging operation. As it turned out, the code was
typically branch dominated pattern matching, so the effects on runtime were
small.

4.3 To be added

Performance can sometimes hinge on inlining the right operation. More arith-
metic buitins need to be inlined.

Hipe does not include a way to save compiled code, which means applica-
tions have to be entirely recompiled every time they are run. An unfortunate
consequence has been that compiler optimizations have tended to be written
for simplicity and speed (to reduce debugging and compile time), rather than
power.

So far, experimental forms of code motion have been added. We believe,
based on our experiences with these optimizations, that general code motion
can be quite useful. For example, we have found some tight inner loops (simple
tail recursive functions) that would benefit from code motion of constants out
of the loop. Partial redundancy elimination would take care of this, if applied
at the Sparc level.

Further optimizations are motivated on the Sparc level.

Global scheduling. The UltraSparc is an in-order processor, and can profit
greatly from reordering instructions or moving them between basic blocks.
In particular, moving loads earlier in the instruction stream provides some
load latency tolerance, while reordering instructions smooths the instruc-
tion dispatch of the CPU.

Coalescing. A number of copy instructions are introduced by the translation,
which are impervious to forward copy propagation, and so are best re-
moved by coalescing during register allocation.

Basic block optimizations. Translation to Sparc introduces some constants
and code that can be constant folded or eliminated as dead code. (This
code is not visible on the RTL level, so similar optimizations on RTL do
not help.)

Apart from conventional compiler optimizations, more work is needed on
eliminating branches from code. Conditional branch elimination is fruitful in
poorly-compiled pattern matching (as is the case in our current JAM frontend)
and code that performs redundant type tests (which sometimes can’t be elimi-
nated by the programmer, e.g., at calls to builtin functions).

Another interesting area is low-level optimizations that take advantage of Er-
lang’s semantics. For example, stores to the heap only initialize structure fields,



never® overwrite them. This can be used to improve scheduling by removing

redundant memory-memory and branch-memory dependences.

Measurements of the call setup/release code of AXD301 [8] found that native
compiled code spent a large number of cycles stalled waiting for instruction
and data caches; given a perfect memory system, the system would run 71%
faster. We believe that techniques that reduce instruction cache and data cache
misses are vitally important. While out-of-order superscalar engines can tolerate
memory latency better than the in-order UltraSparc used in our experiments,
the CPU-memory latency gap is widening very quickly.

Finally, an optimizing frontend (e.g., using high-level transformations and
type analysis) could drastically improve the code submitted to the compiler.
While using the JAM as a frontend means source code is not needed for native
compilation, compiling Erlang directly into Icode is intriguing (perhaps via Core
Erlang [5]). The Hipe group is currently developing such a frontend.

4.4 False starts and dead ends

We implemented a number of experimental optimizations that did not turn out
well.

Partial dead code elimination. There were many code sequences, generated
by pattern matching, where (a) all elements of a structure were loaded,
(b) one element of the structure was tested, and (c) if the test was false,
all the work discarded. We assumed that these loads were expensive, and
should be sunk below the test, so as to perform them only when necessary.

We implemented partial dead code elimination, but found that it resulted
in a severe slowdown, sometimes by integer factors. The problem is that
loads are sunk to their successors, even if the branch is heavily biased
towards the successor where the loads are live. The only effect is then to
delay useful loads, which severely slows down the common path.

A better implementation of PDCE would use execution frequency esti-
mation to avoid moving loads into high-frequency basic blocks. Another
solution would be to employ global instruction scheduling to speculate the
loads sunk by PDCE, though this seems inelegant.

Type analysis. We implemented an interprocedural per-module type analyzer,
in the hope of deleting unnecessary type tests. Erlang’s hot code loading
(where a single module can be replaced at runtime) meant we did not
consider analysis of several modules at a time: a call to another module
could conceivably be replaced by some function of some entirely different
type later on, which would invalidate optimizations based on type.

Unfortunately, we found that most modules we tried (e.g., in the system
standard libraries) were quite open to the rest of the world. This made

3Well, hardly ever.



the input parameters of most functions unknown, resulting in little or no
type information.

We concluded that realistic type analysis either (a) spans several mod-
ules or (b) should be intraprocedural. Lindgren subsequently developed a
method for merging modules while preserving hot code loading [10], which
means the compiler first merges modules, then optimizes the merged clump
of functions heavily.

A source-level module merger has been written by Richard Carlsson, but
it has at the time of writing not been integrated in the system. Several
issues about what modules to merge remain to be resolved.

A more powerful type analyzer is being developed by Sven-Olof Nystrom.
This analyzer potentially overcomes some of the problems of our type
analysis by generating multiple versions of functions. It is an open question
how to integrate such an analysis with the Hipe compiler; in particular,
the AXD301 mesurements highlight the importance of the I-cache, and the
interaction between I-cache and multiple versions of functions is unclear.

Non-faulting loads. We investigated non-faulting loads, as available on UltraSparc-
I and UltraSparc-II. We can speculate a load over its type test if we mask
out the tag and convert it to a non-faulting load. The subsequent test
then decides whether the result is useful. Speculative load scheduling can
be highly useful, since loads often are on the critical path.

We found that unaligned non-faulting loads, as would occasionally result
from the technique above, cost on the order of 1000 cycles on the Ul-
traSparcs. We conjecture that there is an exception while executing the
load, which is masked by the operating system. This high cost makes load
speculation an uncertain affair. (Other architectures and implementations
may change this trade off.)

5 Conclusion

We have described a flexible optimizing native code compiler for Erlang. The
compiler is structured around three intermediate formats: Icode, RTL and
Sparc. These three tiers provide a separation of concerns that has simplified
subsequent development and extensions.

A number of optimizations have been evaluated and discarded during the
development of the compiler and its testing on industrial code. We have found
that simple, conventional optimizations provide a large benefit. Surprisingly,
some intuitively appealing optimizations (such as partial dead code elimination
of loads) did instead worsen code.

We see a number of extensions: the system should be retargeted to the
TA-32 architecture to extend its audience; a more powerful frontend should be
provided; more low-level optimizations should be written, including machine-
specific optimizations.



5.1 Acknowledgements

Erik Johansson developed the dynamic linker of Hipe and wrote a number of
BIFs, including those for performance counters. He also helped with debugging
the system and creditably took over the AXD measurements [6]. The current
members of the Hipe group is extending and improving the Hipe system de-
scribed here in several directions, some of which have not been mentioned in
this paper. In particular, the efforts by Mikael Pettersson are appreciated.

Thomas Lindgren would like to thank the AXD301 team, in particular
Thomas Lindquist, Ulf Wiger, Peter Lundell, Mats Cronquist and Kurt Jo-
hansson, for their help during his stay the AXD301 project.

UppsaLA, NOVEMBER 1999



References

[1] J. Armstrong, R. Virding, C. Wikstrom, M. Williams. Concurrent
Functional Programming in FErlang. Prentice-Hall, 1993. (See also
http://www.erlang.org.)

[2] Proc. Erlang User Conference 1999, Alvsjo, 1999. (See also
http://www.erlang.org.)

[3] E. Johansson, C. Jonsson. Native code compilation for Erlang. Masters
thesis, Uppsala University, October 1996.

[4] S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufman, 1997.

[5] R. Carlsson, E. Johansson, S.-O. Nystrom, M. Pettersson, R. Virding, T.
Lindgren. Core Erlang specification. Work in progress.

[6] E. Johansson. Performance Measurements and Process Optimization for
Erlang. Thesis for the degree of Licentiate of Philosophy. Uppsala Univer-
sity, November 1999.

[7] E. Johansson, S.-O. Nystrém, M. Pettersson, K. Sagonas. HiPE: High-
Performance Erlang. ASTEC report 99/04, October 1999.

[8] E. Johansson, S.-O. Nystrém, C. Jonsson, T. Lindgren. Evaluation of
HiPE, an Erlang native code compiler. ASTEC report 99/03, October
1999.

[9] G. Kane, J. Heinreich. MIPS RISC architecture. Prentice-Hall, 1992.

[10] T. Lindgren. Module merging: aggressive optimization and code replace-
ment in highly available systems. UPMAIL TR 154. Uppsala University,
March 1998.

10



A Compiler code

We counted the number of lines of code (including blank and comment lines) in
the compiler.

Name Lines of code | Description

main.erl 453 Compiler driver

jam.erl 539 JAM bytecode to data
icode.erl 1107 IF definition

icode_cfg.erl 92 IF CFG definition
icode_ebb.erl 9 EBB propagation
icode_liveness.erl o8 Liveness analysis
icode_prop.erl 497 Dataflow optimizations
translate.erl 1303 JAM to Icode
update_catches.erl | 90 Minimize save/restore at catch
rtlerl 1211 IF definition

rtl_cfg.erl 107 IF CFG definition
rtl_ebb.erl 9 EBB propagation
rtl_liveness.erl 74 Liveness analysis
rtl_prop.erl 285 Dataflow optimizations
rtl_frame.erl 637 RTL to RTL2
icode2rtl.erl 1242 Icode to RTL

finalize.erl 550 Linearize CFG
rt12sparc.erl 224 RTL to Sparc

sparc.erl 1623 IF definition

sparc_cfg.erl 78 IF CFG definition
sparc_liveness.erl | 75 Liveness analysis
sparc_op.erl 236 IF operations definition
sparc_regalloc.erl | 306 Sparc interface to regalloc
regalloc.erl 854 Graph-coloring regalloc
sparc_registers.erl | 213 Regalloc info

bb.erl 47 Basic blocks (library)
cfg.inc 413 CFG (param.module)
ebb.inc 214 EBB (param.module)
liveness.inc 214 Liveness analysis (param.module)

11



